Mostrar el registro sencillo del ítem
dc.contributor.author | Colomer Granero, Adrián | es_ES |
dc.contributor.author | Fuentes-Hurtado, Félix José | es_ES |
dc.contributor.author | Naranjo Ornedo, Valeriana | es_ES |
dc.contributor.author | Guixeres Provinciale, Jaime | es_ES |
dc.contributor.author | Ausin-Azofra, Jose Manuel | es_ES |
dc.contributor.author | Alcañiz Raya, Mariano Luis | es_ES |
dc.date.accessioned | 2017-06-20T11:35:07Z | |
dc.date.available | 2017-06-20T11:35:07Z | |
dc.date.issued | 2016-07-15 | |
dc.identifier.issn | 1662-5188 | |
dc.identifier.uri | http://hdl.handle.net/10251/83259 | |
dc.description | This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission | es_ES |
dc.description.abstract | This work focuses on finding the most discriminatory or representative features that allow to classify commercials according to negative, neutral and positive effectiveness based on the Ace Score index. For this purpose, an experiment involving forty-seven participants was carried out. In this experiment electroencephalography (EEG), electrocardiography (ECG), Galvanic Skin Response (GSR) and respiration data were acquired while subjects were watching a 30-min audiovisual content. This content was composed by a submarine documentary and nine commercials (one of themthe ad under evaluation). After the signal pre-processing, four sets of features were extracted from the physiological signals using different state-of-the-art metrics. These features computed in time and frequency domains are the inputs to several basic and advanced classifiers. An average of 89.76% of the instances was correctly classified according to the Ace Score index. The best results were obtained by a classifier consisting of a combination between AdaBoost and RandomForest with automatic selection of features. The selected features were those extracted from GSR and HRV signals. These results are promising in the audiovisual content evaluation field by means of physiological signal processing. | es_ES |
dc.description.sponsorship | This work has been supported by the Heineken Endowed Chair in Neuromarketing at the Universitat Politecnica de Valencia in order to research and apply new technologies and neuroscience in communication, distribution and consumption fields. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media | es_ES |
dc.relation.ispartof | Frontiers in Computational Neuroscience | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Audiovisual Content Evaluation | es_ES |
dc.subject | Effectiveness | es_ES |
dc.subject | Physiological Signal | es_ES |
dc.subject | Electroencephalography (EEG) | es_ES |
dc.subject | Electrocardiography 18 (ECG) | es_ES |
dc.subject | Galvanic Skin Response (GSR) | es_ES |
dc.subject | Respiration | es_ES |
dc.subject | Feature extraction | es_ES |
dc.subject | Advanced Classifiers | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.title | A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fncom.2016.00074 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Colomer Granero, A.; Fuentes-Hurtado, FJ.; Naranjo Ornedo, V.; Guixeres Provinciale, J.; Ausin-Azofra, JM.; Alcañiz Raya, ML. (2016). A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents. Frontiers in Computational Neuroscience. 10(74):1-16. doi:10.3389/fncom.2016.00074 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3389/fncom.2016.00074 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 74 | es_ES |
dc.relation.senia | 315957 | es_ES |
dc.identifier.pmcid | PMC4945646 | en_EN |