- -

All-Silicon spherical-Mie-resonator photodiode with spectral response in the infrared region

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

All-Silicon spherical-Mie-resonator photodiode with spectral response in the infrared region

Show full item record

Garín Escrivá, M.; Fenollosa Esteve, R.; Alcubilla, R.; Shi, L.; Marsal, LF.; Meseguer Rico, FJ. (2014). All-Silicon spherical-Mie-resonator photodiode with spectral response in the infrared region. Nature Communications. 5:2-6. doi:10.1038/ncomms4440

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/83567

Files in this item

Item Metadata

Title: All-Silicon spherical-Mie-resonator photodiode with spectral response in the infrared region
Author:
UPV Unit: Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica
Issued date:
Abstract:
[EN] Silicon is the material of choice for visible light photodetection and solar cell fabrication. However, due to the intrinsic band gap properties of silicon, most infrared photons are energetically useless. Here, we ...[+]
Subjects: Solar cells , Light-absortion , Devices , Temperature , Scattering , Colloids , Design , Limit
Copyrigths: Reserva de todos los derechos
Source:
Nature Communications. (issn: 2041-1723 )
DOI: 10.1038/ncomms4440
Publisher:
Nature Publishing Group
Publisher version: http://doi.org/10.1038/ncomms4440
Project ID: info:eu-repo/grantAgreement/EC/FP7/248855/EU
Thanks:
The authors acknowledge financial support from the following projects: FIS2009-07812, MAT2012-35040, network ‘Nanophotonics for Energy Efficiency’ Grant agreement 248855, TEC2012-34397, Consolider 2007-0046 Nanolight, AGAUR ...[+]
Type: Artículo

References

Schockley, W. & Queisser, H. J. Detailed balance limit of efficiency of pn junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

Cao, L. et al. Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8, 643–647 (2009).

Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9, 239–244 (2010). [+]
Schockley, W. & Queisser, H. J. Detailed balance limit of efficiency of pn junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

Cao, L. et al. Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8, 643–647 (2009).

Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9, 239–244 (2010).

Ünlü, M. S. & Strite, S. Resonant cavity enhanced photonic devices. J. Appl. Phys. 78, 607–639 (1995).

Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

Serpengüzel, A., Kurt, A. & Ayaz, U. K. Silicon microspheres for electronic and photonic integration. Photon. Nanostructur.: Fundam. Appl. 6, 179–182 (2008).

Kim, S. K. et al. Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design. Nano Lett. 12, 4971–4976 (2012).

Yu, L. et al. Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells. Nano Lett. 12, 4153–4158 (2012).

Fan, Z. et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8, 648–653 (2009).

Wallentin, J. et al. InP Nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339, 1057–1060 (2013).

Krogstrup, P. et al. Single-nanowire solar cells beyond the Shockley–Queisser limit. Nat. Photon. 7, 306–310 (2013).

Fenollosa, R., Meseguer, F. & Tymczenko, M. Silicon colloids: from microcavities to photonic sponges. Adv. Mater. 20, 95–98 (2008).

Pell, L. E., Schricker, A. D., Mikulec, F. V. & Korgel, B. A. Synthesis of amorphous silicon colloids by trisilane thermolysis in high temperature supercritical solvents. Langmuir 20, 6546–6548 (2004).

Shi, L. et al. Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region. Nat. Commun. 4, a.n.1904 (2013).

Levine, J. D., Hotchkiss, G. B. & Wammerbacher, M. D. Basic properties of the spheral solar cell. Proc. 22nd IEEE PVSC p1045IEEE: Las Vegas, (1991).

Breen, T. L., Tien, J., Oliver, S. R. J., Hadzic, T. & Whitesides, G. M. Design and self-assembly of open, regular, 3D mesostructures. Science 284, 948–951 (1999).

Gracias, D. H., Tien, J., Breen, T. L., Hsu, C. & Whitesides, G. M. Forming electrical networks in three dimensions by self-assembly. Science 289, 1170–1172 (2000).

Gumennik, A. et al. Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities. Nat. Commun. 4, a.n.2216 (2013).

Yamamoto, K. et al. Thin-film poly-Si solar cells on glass substrate fabricated at low temperature. Appl. Phys. A 69, 179–185 (1999).

Cesare, G., de, Caputo, D. & Tucci, M. Electrical properties of ITO/crystalline-silicon contact at different deposition temperatures. IEEE Electron Dev. Lett. 33, 327–329 (2012).

Eversole, J. D., Lin, H.-B., Huston, A. L. & Campillo, A. J. Spherical-cavity-mode assignments of optical resonances in microdoplets using elastic scattering. J. Opt. Soc. Am. A 7, 2159–2168 (1990).

Poruba, A. et al. Optical absorption and light scattering in microcrystalline silicon thin films and solar cells. J. Appl. Phys. 88, 148–160 (2000).

[-]

This item appears in the following Collection(s)

Show full item record