Mostrar el registro sencillo del ítem
dc.contributor.author | Garín Escrivá, Moisés | es_ES |
dc.contributor.author | Fenollosa Esteve, Roberto | es_ES |
dc.contributor.author | Alcubilla, Ramón | es_ES |
dc.contributor.author | Shi, Lei | es_ES |
dc.contributor.author | Marsal, L. F. | es_ES |
dc.contributor.author | Meseguer Rico, Francisco Javier | es_ES |
dc.date.accessioned | 2017-06-23T12:42:36Z | |
dc.date.available | 2017-06-23T12:42:36Z | |
dc.date.issued | 2014-03 | |
dc.identifier.issn | 2041-1723 | |
dc.identifier.uri | http://hdl.handle.net/10251/83567 | |
dc.description.abstract | [EN] Silicon is the material of choice for visible light photodetection and solar cell fabrication. However, due to the intrinsic band gap properties of silicon, most infrared photons are energetically useless. Here, we show the first example of a photodiode developed on a micrometre scale sphere made of polycrystalline silicon whose photocurrent shows the Mie modes of a classical spherical resonator. The long dwell time of resonating photons enhances the photocurrent response, extending it into the infrared region well beyond the absorption edge of bulk silicon. It opens the door for developing solar cells and photodetectors that may harvest infrared light more efficiently than silicon photovoltaic devices that are so far developed. | es_ES |
dc.description.sponsorship | The authors acknowledge financial support from the following projects: FIS2009-07812, MAT2012-35040, network ‘Nanophotonics for Energy Efficiency’ Grant agreement 248855, TEC2012-34397, Consolider 2007-0046 Nanolight, AGAUR 2009 SGR 549 and the PROMETEO/2010/043. We also acknowledge the fruitful discussions with Professor Javier Garcı´a de Abajo. | |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Nature Communications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Solar cells | es_ES |
dc.subject | Light-absortion | es_ES |
dc.subject | Devices | es_ES |
dc.subject | Temperature | es_ES |
dc.subject | Scattering | es_ES |
dc.subject | Colloids | es_ES |
dc.subject | Design | es_ES |
dc.subject | Limit | es_ES |
dc.title | All-Silicon spherical-Mie-resonator photodiode with spectral response in the infrared region | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/ncomms4440 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/248855/EU/Nanophotonics for Energy Efficiency/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F043/ES/TRANSMISIÓN Y LOCALIZACIÓN DE ONDAS EN METAMATERIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//FIS2009-07812/ES/Coloides De Silicio. Sintesis, Caracterizacion Y Aplicaciones Tecnologicas./ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-35040/ES/APLICACIONES BASADAS EN COLOIDES DE SILICIO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2012-34397/ES/TECNOLOGIA DE DISPOSITIVOS FOTOVOLTAICOS DE TERCERA GENERACION: CELULAS SOLARES ORGANICAS NANOESTRUCTURADAS E HIBRIDAS/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica | es_ES |
dc.description.bibliographicCitation | Garín Escrivá, M.; Fenollosa Esteve, R.; Alcubilla, R.; Shi, L.; Marsal, LF.; Meseguer Rico, FJ. (2014). All-Silicon spherical-Mie-resonator photodiode with spectral response in the infrared region. Nature Communications. 5:2-6. https://doi.org/10.1038/ncomms4440 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1038/ncomms4440 | es_ES |
dc.description.upvformatpinicio | 2 | es_ES |
dc.description.upvformatpfin | 6 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.relation.senia | 286798 | es_ES |
dc.identifier.pmid | 24614644 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | European Commission | |
dc.description.references | Schockley, W. & Queisser, H. J. Detailed balance limit of efficiency of pn junction solar cells. J. Appl. Phys. 32, 510–519 (1961). | es_ES |
dc.description.references | Cao, L. et al. Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8, 643–647 (2009). | es_ES |
dc.description.references | Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9, 239–244 (2010). | es_ES |
dc.description.references | Ünlü, M. S. & Strite, S. Resonant cavity enhanced photonic devices. J. Appl. Phys. 78, 607–639 (1995). | es_ES |
dc.description.references | Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005). | es_ES |
dc.description.references | Serpengüzel, A., Kurt, A. & Ayaz, U. K. Silicon microspheres for electronic and photonic integration. Photon. Nanostructur.: Fundam. Appl. 6, 179–182 (2008). | es_ES |
dc.description.references | Kim, S. K. et al. Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design. Nano Lett. 12, 4971–4976 (2012). | es_ES |
dc.description.references | Yu, L. et al. Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells. Nano Lett. 12, 4153–4158 (2012). | es_ES |
dc.description.references | Fan, Z. et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8, 648–653 (2009). | es_ES |
dc.description.references | Wallentin, J. et al. InP Nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339, 1057–1060 (2013). | es_ES |
dc.description.references | Krogstrup, P. et al. Single-nanowire solar cells beyond the Shockley–Queisser limit. Nat. Photon. 7, 306–310 (2013). | es_ES |
dc.description.references | Fenollosa, R., Meseguer, F. & Tymczenko, M. Silicon colloids: from microcavities to photonic sponges. Adv. Mater. 20, 95–98 (2008). | es_ES |
dc.description.references | Pell, L. E., Schricker, A. D., Mikulec, F. V. & Korgel, B. A. Synthesis of amorphous silicon colloids by trisilane thermolysis in high temperature supercritical solvents. Langmuir 20, 6546–6548 (2004). | es_ES |
dc.description.references | Shi, L. et al. Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region. Nat. Commun. 4, a.n.1904 (2013). | es_ES |
dc.description.references | Levine, J. D., Hotchkiss, G. B. & Wammerbacher, M. D. Basic properties of the spheral solar cell. Proc. 22nd IEEE PVSC p1045IEEE: Las Vegas, (1991). | es_ES |
dc.description.references | Breen, T. L., Tien, J., Oliver, S. R. J., Hadzic, T. & Whitesides, G. M. Design and self-assembly of open, regular, 3D mesostructures. Science 284, 948–951 (1999). | es_ES |
dc.description.references | Gracias, D. H., Tien, J., Breen, T. L., Hsu, C. & Whitesides, G. M. Forming electrical networks in three dimensions by self-assembly. Science 289, 1170–1172 (2000). | es_ES |
dc.description.references | Gumennik, A. et al. Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities. Nat. Commun. 4, a.n.2216 (2013). | es_ES |
dc.description.references | Yamamoto, K. et al. Thin-film poly-Si solar cells on glass substrate fabricated at low temperature. Appl. Phys. A 69, 179–185 (1999). | es_ES |
dc.description.references | Cesare, G., de, Caputo, D. & Tucci, M. Electrical properties of ITO/crystalline-silicon contact at different deposition temperatures. IEEE Electron Dev. Lett. 33, 327–329 (2012). | es_ES |
dc.description.references | Eversole, J. D., Lin, H.-B., Huston, A. L. & Campillo, A. J. Spherical-cavity-mode assignments of optical resonances in microdoplets using elastic scattering. J. Opt. Soc. Am. A 7, 2159–2168 (1990). | es_ES |
dc.description.references | Poruba, A. et al. Optical absorption and light scattering in microcrystalline silicon thin films and solar cells. J. Appl. Phys. 88, 148–160 (2000). | es_ES |