- -

All-Silicon spherical-Mie-resonator photodiode with spectral response in the infrared region

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

All-Silicon spherical-Mie-resonator photodiode with spectral response in the infrared region

Show simple item record

Files in this item

dc.contributor.author Garín Escrivá, Moisés es_ES
dc.contributor.author Fenollosa Esteve, Roberto es_ES
dc.contributor.author Alcubilla, Ramón es_ES
dc.contributor.author Shi, Lei es_ES
dc.contributor.author Marsal, L. F. es_ES
dc.contributor.author Meseguer Rico, Francisco Javier es_ES
dc.date.accessioned 2017-06-23T12:42:36Z
dc.date.available 2017-06-23T12:42:36Z
dc.date.issued 2014-03
dc.identifier.issn 2041-1723
dc.identifier.uri http://hdl.handle.net/10251/83567
dc.description.abstract [EN] Silicon is the material of choice for visible light photodetection and solar cell fabrication. However, due to the intrinsic band gap properties of silicon, most infrared photons are energetically useless. Here, we show the first example of a photodiode developed on a micrometre scale sphere made of polycrystalline silicon whose photocurrent shows the Mie modes of a classical spherical resonator. The long dwell time of resonating photons enhances the photocurrent response, extending it into the infrared region well beyond the absorption edge of bulk silicon. It opens the door for developing solar cells and photodetectors that may harvest infrared light more efficiently than silicon photovoltaic devices that are so far developed. es_ES
dc.description.sponsorship The authors acknowledge financial support from the following projects: FIS2009-07812, MAT2012-35040, network ‘Nanophotonics for Energy Efficiency’ Grant agreement 248855, TEC2012-34397, Consolider 2007-0046 Nanolight, AGAUR 2009 SGR 549 and the PROMETEO/2010/043. We also acknowledge the fruitful discussions with Professor Javier Garcı´a de Abajo.
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Solar cells es_ES
dc.subject Light-absortion es_ES
dc.subject Devices es_ES
dc.subject Temperature es_ES
dc.subject Scattering es_ES
dc.subject Colloids es_ES
dc.subject Design es_ES
dc.subject Limit es_ES
dc.title All-Silicon spherical-Mie-resonator photodiode with spectral response in the infrared region es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/ncomms4440
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/248855/EU/Nanophotonics for Energy Efficiency/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F043/ES/TRANSMISIÓN Y LOCALIZACIÓN DE ONDAS EN METAMATERIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS2009-07812/ES/Coloides De Silicio. Sintesis, Caracterizacion Y Aplicaciones Tecnologicas./
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-35040/ES/APLICACIONES BASADAS EN COLOIDES DE SILICIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2012-34397/ES/TECNOLOGIA DE DISPOSITIVOS FOTOVOLTAICOS DE TERCERA GENERACION: CELULAS SOLARES ORGANICAS NANOESTRUCTURADAS E HIBRIDAS/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica es_ES
dc.description.bibliographicCitation Garín Escrivá, M.; Fenollosa Esteve, R.; Alcubilla, R.; Shi, L.; Marsal, LF.; Meseguer Rico, FJ. (2014). All-Silicon spherical-Mie-resonator photodiode with spectral response in the infrared region. Nature Communications. 5:2-6. https://doi.org/10.1038/ncomms4440 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1038/ncomms4440 es_ES
dc.description.upvformatpinicio 2 es_ES
dc.description.upvformatpfin 6 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.relation.senia 286798 es_ES
dc.identifier.pmid 24614644
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder European Commission
dc.description.references Schockley, W. & Queisser, H. J. Detailed balance limit of efficiency of pn junction solar cells. J. Appl. Phys. 32, 510–519 (1961). es_ES
dc.description.references Cao, L. et al. Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8, 643–647 (2009). es_ES
dc.description.references Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9, 239–244 (2010). es_ES
dc.description.references Ünlü, M. S. & Strite, S. Resonant cavity enhanced photonic devices. J. Appl. Phys. 78, 607–639 (1995). es_ES
dc.description.references Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005). es_ES
dc.description.references Serpengüzel, A., Kurt, A. & Ayaz, U. K. Silicon microspheres for electronic and photonic integration. Photon. Nanostructur.: Fundam. Appl. 6, 179–182 (2008). es_ES
dc.description.references Kim, S. K. et al. Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design. Nano Lett. 12, 4971–4976 (2012). es_ES
dc.description.references Yu, L. et al. Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells. Nano Lett. 12, 4153–4158 (2012). es_ES
dc.description.references Fan, Z. et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8, 648–653 (2009). es_ES
dc.description.references Wallentin, J. et al. InP Nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339, 1057–1060 (2013). es_ES
dc.description.references Krogstrup, P. et al. Single-nanowire solar cells beyond the Shockley–Queisser limit. Nat. Photon. 7, 306–310 (2013). es_ES
dc.description.references Fenollosa, R., Meseguer, F. & Tymczenko, M. Silicon colloids: from microcavities to photonic sponges. Adv. Mater. 20, 95–98 (2008). es_ES
dc.description.references Pell, L. E., Schricker, A. D., Mikulec, F. V. & Korgel, B. A. Synthesis of amorphous silicon colloids by trisilane thermolysis in high temperature supercritical solvents. Langmuir 20, 6546–6548 (2004). es_ES
dc.description.references Shi, L. et al. Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region. Nat. Commun. 4, a.n.1904 (2013). es_ES
dc.description.references Levine, J. D., Hotchkiss, G. B. & Wammerbacher, M. D. Basic properties of the spheral solar cell. Proc. 22nd IEEE PVSC p1045IEEE: Las Vegas, (1991). es_ES
dc.description.references Breen, T. L., Tien, J., Oliver, S. R. J., Hadzic, T. & Whitesides, G. M. Design and self-assembly of open, regular, 3D mesostructures. Science 284, 948–951 (1999). es_ES
dc.description.references Gracias, D. H., Tien, J., Breen, T. L., Hsu, C. & Whitesides, G. M. Forming electrical networks in three dimensions by self-assembly. Science 289, 1170–1172 (2000). es_ES
dc.description.references Gumennik, A. et al. Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities. Nat. Commun. 4, a.n.2216 (2013). es_ES
dc.description.references Yamamoto, K. et al. Thin-film poly-Si solar cells on glass substrate fabricated at low temperature. Appl. Phys. A 69, 179–185 (1999). es_ES
dc.description.references Cesare, G., de, Caputo, D. & Tucci, M. Electrical properties of ITO/crystalline-silicon contact at different deposition temperatures. IEEE Electron Dev. Lett. 33, 327–329 (2012). es_ES
dc.description.references Eversole, J. D., Lin, H.-B., Huston, A. L. & Campillo, A. J. Spherical-cavity-mode assignments of optical resonances in microdoplets using elastic scattering. J. Opt. Soc. Am. A 7, 2159–2168 (1990). es_ES
dc.description.references Poruba, A. et al. Optical absorption and light scattering in microcrystalline silicon thin films and solar cells. J. Appl. Phys. 88, 148–160 (2000). es_ES


This item appears in the following Collection(s)

Show simple item record