- -

An efficient ant colony optimization strategy for the resolution of multi-class queries

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An efficient ant colony optimization strategy for the resolution of multi-class queries

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Krynicki, Kami es_ES
dc.contributor.author Houle, Michael E. es_ES
dc.contributor.author Jaén Martínez, Francisco Javier es_ES
dc.date.accessioned 2017-07-03T08:19:41Z
dc.date.available 2017-07-03T08:19:41Z
dc.date.issued 2016-08-01
dc.identifier.issn 0950-7051
dc.identifier.uri http://hdl.handle.net/10251/84305
dc.description.abstract Ant Colony Optimization is a bio-inspired computational technique for establishing optimal paths in graphs. It has been successfully adapted to solve many classical computational problems, with considerable results. Nevertheless, the attempts to apply ACO to the question of multidimensional problems and multi-class resource querying have been somewhat limited. They suffer from either severely decreased efficiency or low scalability, and are usually static, custom-made solutions with only one particular use. In this paper we employ Angry Ant Framework, a multipheromone variant of Ant Colony System that surpasses its predecessor in terms of convergence quality, to the question of multi-class resource queries. To the best of the authors knowledge it is the only algorithm capable of dynamically creating and pruning pheromone levels, which we refer to as dynamic pheromone stratification. In a series of experiments we verify that, due to this pheromone level flexibility, Angry Ant Framework, as well as our improvement of it called Entropic Angry Ant Framework, have significantly more potential for handling multi-class resource queries than their single pheromone counterpart. Most notably, the tight coupling between pheromone and resource classes enables convergence that is both better in quality and more stable, while maintaining a sublinear cost. © 2016 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship Kamil Krynicki is a FPI fellow of Universitat Politecnica de Valencia, number 3117. This work received support from Spanish Ministry of Economy and Competitiveness and European Development Regional Fund (EDRF-FEDER) with the project SUPEREMOS TIN2014-60077-R and the National Institute of Informatics, Tokyo, Japan. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Knowledge-Based Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ant colony optimization es_ES
dc.subject Multi-class queries es_ES
dc.subject Resource queries es_ES
dc.subject Multipheromone es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title An efficient ant colony optimization strategy for the resolution of multi-class queries es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.knosys.2016.05.009
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-60077-R/ES/SISTEMA DE TERAPIAS DE JUEGO BASADO EN SUPERFICIES INTERACTIVAS PARA LA MEJORA DEL IMPACTO EMOCIONAL DERIVADO DE LA HOSPITALIZACION PEDIATRICA/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Krynicki, K.; Houle, ME.; Jaén Martínez, FJ. (2016). An efficient ant colony optimization strategy for the resolution of multi-class queries. Knowledge-Based Systems. 105:96-106. https://doi.org/10.1016/j.knosys.2016.05.009 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.knosys.2016.05.009 es_ES
dc.description.upvformatpinicio 96 es_ES
dc.description.upvformatpfin 106 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 105 es_ES
dc.relation.senia 335897 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder National Institute of Informatics, Japón es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem