Mostrar el registro sencillo del ítem
dc.contributor.author | Krynicki, Kami | es_ES |
dc.contributor.author | Houle, Michael E. | es_ES |
dc.contributor.author | Jaén Martínez, Francisco Javier | es_ES |
dc.date.accessioned | 2017-07-03T08:19:41Z | |
dc.date.available | 2017-07-03T08:19:41Z | |
dc.date.issued | 2016-08-01 | |
dc.identifier.issn | 0950-7051 | |
dc.identifier.uri | http://hdl.handle.net/10251/84305 | |
dc.description.abstract | Ant Colony Optimization is a bio-inspired computational technique for establishing optimal paths in graphs. It has been successfully adapted to solve many classical computational problems, with considerable results. Nevertheless, the attempts to apply ACO to the question of multidimensional problems and multi-class resource querying have been somewhat limited. They suffer from either severely decreased efficiency or low scalability, and are usually static, custom-made solutions with only one particular use. In this paper we employ Angry Ant Framework, a multipheromone variant of Ant Colony System that surpasses its predecessor in terms of convergence quality, to the question of multi-class resource queries. To the best of the authors knowledge it is the only algorithm capable of dynamically creating and pruning pheromone levels, which we refer to as dynamic pheromone stratification. In a series of experiments we verify that, due to this pheromone level flexibility, Angry Ant Framework, as well as our improvement of it called Entropic Angry Ant Framework, have significantly more potential for handling multi-class resource queries than their single pheromone counterpart. Most notably, the tight coupling between pheromone and resource classes enables convergence that is both better in quality and more stable, while maintaining a sublinear cost. © 2016 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | Kamil Krynicki is a FPI fellow of Universitat Politecnica de Valencia, number 3117. This work received support from Spanish Ministry of Economy and Competitiveness and European Development Regional Fund (EDRF-FEDER) with the project SUPEREMOS TIN2014-60077-R and the National Institute of Informatics, Tokyo, Japan. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Knowledge-Based Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ant colony optimization | es_ES |
dc.subject | Multi-class queries | es_ES |
dc.subject | Resource queries | es_ES |
dc.subject | Multipheromone | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | An efficient ant colony optimization strategy for the resolution of multi-class queries | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.knosys.2016.05.009 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2014-60077-R/ES/SISTEMA DE TERAPIAS DE JUEGO BASADO EN SUPERFICIES INTERACTIVAS PARA LA MEJORA DEL IMPACTO EMOCIONAL DERIVADO DE LA HOSPITALIZACION PEDIATRICA/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Krynicki, K.; Houle, ME.; Jaén Martínez, FJ. (2016). An efficient ant colony optimization strategy for the resolution of multi-class queries. Knowledge-Based Systems. 105:96-106. https://doi.org/10.1016/j.knosys.2016.05.009 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.knosys.2016.05.009 | es_ES |
dc.description.upvformatpinicio | 96 | es_ES |
dc.description.upvformatpfin | 106 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 105 | es_ES |
dc.relation.senia | 335897 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | National Institute of Informatics, Japón | es_ES |