- -

Low order modes in microcavities based on silicon colloids

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Low order modes in microcavities based on silicon colloids

Show full item record

Xifre Perez, E.; Fenollosa Esteve, R.; Meseguer Rico, FJ. (2011). Low order modes in microcavities based on silicon colloids. Optics Express. 19(4):3455-3463. doi:10.1364/OE.19.003455

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/84333

Files in this item

Item Metadata

Title: Low order modes in microcavities based on silicon colloids
Author: Xifre Perez, Elisabet Fenollosa Esteve, Roberto Meseguer Rico, Francisco Javier
UPV Unit: Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica
Issued date:
Abstract:
[EN] Silicon colloids based microcavities, with sphere size between 1 and 3 micrometers, have been synthesized and optically characterized. Due to both the small cavity volume and the high refractive index of silicon we ...[+]
Subjects: Electric field distributions , Electronic orbitals , Evanescent fields , High refractive index , Low order , Mode index , Mode volume , Optical microcavities , Optical modes , Quality factor Q , Sensing applications , Small cavities , Colloids , Electric fields , Microcavities , Refractive index , Spheres , Colloid chemistry
Copyrigths: Reconocimiento - No comercial (by-nc)
Source:
Optics Express. (issn: 1094-4087 )
DOI: 10.1364/OE.19.003455
Publisher:
Optical Society of America
Publisher version: http://doi.org/10.1364/OE.19.003455
Thanks:
The authors acknowledge financial support from projects Apoyo a la investigacion 2009 from Universidad Politecnica de Valencia, no reg. 4325, FIS2009-07812, Consolider 2007-0046 Nanolight, PROMETEO/2010/043. E. Xifre-Perez ...[+]
Type: Artículo

References

Muller, D. A. (2005). A sound barrier for silicon? Nature Materials, 4(9), 645-647. doi:10.1038/nmat1466

Song, B.-S., Noda, S., Asano, T., & Akahane, Y. (2005). Ultra-high-Q photonic double-heterostructure nanocavity. Nature Materials, 4(3), 207-210. doi:10.1038/nmat1320

Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S. W., … van Driel, H. M. (2000). Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 405(6785), 437-440. doi:10.1038/35013024 [+]
Muller, D. A. (2005). A sound barrier for silicon? Nature Materials, 4(9), 645-647. doi:10.1038/nmat1466

Song, B.-S., Noda, S., Asano, T., & Akahane, Y. (2005). Ultra-high-Q photonic double-heterostructure nanocavity. Nature Materials, 4(3), 207-210. doi:10.1038/nmat1320

Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S. W., … van Driel, H. M. (2000). Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 405(6785), 437-440. doi:10.1038/35013024

Song, B.-S. (2003). Photonic Devices Based on In-Plane Hetero Photonic Crystals. Science, 300(5625), 1537-1537. doi:10.1126/science.1083066

Ashkin, A., & Dziedzic, J. M. (1977). Observation of Resonances in the Radiation Pressure on Dielectric Spheres. Physical Review Letters, 38(23), 1351-1354. doi:10.1103/physrevlett.38.1351

Ashkin, A., & Dziedzic, J. M. (1981). Observation of optical resonances of dielectric spheres by light scattering. Applied Optics, 20(10), 1803. doi:10.1364/ao.20.001803

Painter, O. (1999). Two-Dimensional Photonic Band-Gap Defect Mode Laser. Science, 284(5421), 1819-1821. doi:10.1126/science.284.5421.1819

Armani, D. K., Kippenberg, T. J., Spillane, S. M., & Vahala, K. J. (2003). Ultra-high-Q toroid microcavity on a chip. Nature, 421(6926), 925-928. doi:10.1038/nature01371

Inoue, K., Sasaki, H., Ishida, K., Sugimoto, Y., Ikeda, N., Tanaka, Y., … Asakawa, K. (2004). InAs quantum-dot laser utilizing GaAs photonic-crystal line-defect waveguide. Optics Express, 12(22), 5502. doi:10.1364/opex.12.005502

Fenollosa, R., Meseguer, F., & Tymczenko, M. (2008). Silicon Colloids: From Microcavities to Photonic Sponges. Advanced Materials, 20(1), 95-98. doi:10.1002/adma.200701589

Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62-69. doi:10.1016/0021-9797(68)90272-5

Conwell, P. R., Barber, P. W., & Rushforth, C. K. (1984). Resonant spectra of dielectric spheres. Journal of the Optical Society of America A, 1(1), 62. doi:10.1364/josaa.1.000062

Ng, J., Chan, C. T., Sheng, P., & Lin, Z. (2005). Strong optical force induced by morphology-dependent resonances. Optics Letters, 30(15), 1956. doi:10.1364/ol.30.001956

Vahala, K. J. (2003). Optical microcavities. Nature, 424(6950), 839-846. doi:10.1038/nature01939

García de Abajo, F. J. (1999). Interaction of Radiation and Fast Electrons with Clusters of Dielectrics: A Multiple Scattering Approach. Physical Review Letters, 82(13), 2776-2779. doi:10.1103/physrevlett.82.2776

Xifré-Pérez, E., García de Abajo, F. J., Fenollosa, R., & Meseguer, F. (2009). Photonic Binding in Silicon-Colloid Microcavities. Physical Review Letters, 103(10). doi:10.1103/physrevlett.103.103902

Tanaka, Y., Asano, T., & Noda, S. (2008). Design of Photonic Crystal Nanocavity With $Q$-Factor of ${{\sim}10^{9}}$. Journal of Lightwave Technology, 26(11), 1532-1539. doi:10.1109/jlt.2008.923648

Takahashi, Y., Tanaka, Y., Hagino, H., Sugiya, T., Sato, Y., Asano, T., & Noda, S. (2009). Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration. Optics Express, 17(20), 18093. doi:10.1364/oe.17.018093

Kippenberg, T. J., Spillane, S. M., & Vahala, K. J. (2004). Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip. Applied Physics Letters, 85(25), 6113-6115. doi:10.1063/1.1833556

Braginsky, V. B., Gorodetsky, M. L., & Ilchenko, V. S. (1989). Quality-factor and nonlinear properties of optical whispering-gallery modes. Physics Letters A, 137(7-8), 393-397. doi:10.1016/0375-9601(89)90912-2

[-]

This item appears in the following Collection(s)

Show full item record