- -

Quantitative genetic analysis of salicylic acid perception in Arabidopsis

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Quantitative genetic analysis of salicylic acid perception in Arabidopsis

Show full item record

Dobón Alonso, A.; Canet, J.; Perales, L.; Tornero Feliciano, P. (2011). Quantitative genetic analysis of salicylic acid perception in Arabidopsis. Planta. 234(4):671-684. doi:10.1007/s00425-011-1436-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/84526

Files in this item

Item Metadata

Title: Quantitative genetic analysis of salicylic acid perception in Arabidopsis
Author: Dobón Alonso, Albor Canet, J.V Perales, L Tornero Feliciano, Pablo
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] Salicylic acid (SA) is a phytohormone required for a full resistance against some pathogens in Arabidopsis, and NPR1 (Non-Expressor of Pathogenesis Related Genes 1) is the only gene with a strong effect on resistance ...[+]
Subjects: Arabidopsis , Defence , Natural variation , Salicylic acid , Pseudomonas syringae
Copyrigths: Reserva de todos los derechos
Source:
Planta. (issn: 0032-0935 )
DOI: 10.1007/s00425-011-1436-6
Publisher:
Springer Verlag (Germany)
Publisher version: http://doi.org/10.1007/s00425-011-1436-6
Project ID:
Ministerio de Ciencia e Innovación (MICINN), Spain [BIO2010-18896]
Thanks:
This work was supported by the Ministerio de Ciencia e Innovacion (MICINN) of Spain (grant BIO201018896 to PT, a JAE-CSIC Fellowship to JVC and a FPI-MICINN to AD). We appreciate the BTH provided by Syngenta and the ...[+]
Type: Artículo

References

Adam L, Somerville SC (1996) Genetic characterization of five powdery mildew resistance loci in Arabidopsis thaliana. Plant J 9:341–356

Alonso-Blanco C, Koorneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5:22–29

Alonso-Blanco C, El-Assal SE, Coupland G, Koornneef M (1998a) Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Genetics 149:749–764 [+]
Adam L, Somerville SC (1996) Genetic characterization of five powdery mildew resistance loci in Arabidopsis thaliana. Plant J 9:341–356

Alonso-Blanco C, Koorneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5:22–29

Alonso-Blanco C, El-Assal SE, Coupland G, Koornneef M (1998a) Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Genetics 149:749–764

Alonso-Blanco C, Peeters A, Koornneef M, Lister C, Dean C, van den Bosch N, Pot J, Kuiper M (1998b) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J 14:259–271

Alonso-Blanco C, Koornneef M, van Ooijen JW (2006) QTL analysis. Methods Mol Biol 323:79–99

Bakker EG, Traw MB, Toomajian C, Kreitman M, Bergelson J (2008) Low levels of polymorphism in genes that control the activation of defense response in Arabidopsis thaliana. Genetics 178:2031–2043

Bilgin DD, Zavala JA, Zhu J, Clough SJ, Ort DR, Delucia EH (2010) Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ 33:1597–1613

Canet JV, Dobón A, Ibáñez F, Perales L, Tornero P (2010a) Resistance and biomass in Arabidopsis: a new model for salicylic acid perception. Plant Biotech J 8:126–141

Canet JV, Dobón A, Roig A, Tornero P (2010b) Structure-function analysis of npr1 alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid. Plant Cell Environ 33:1911–1922

Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592

Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

Chen HJ, Hou WC, Kuc J, Lin YH (2001) Ca2+-dependent and Ca2+-independent excretion modes of salicylic acid in tobacco cell suspension culture. J Exp Bot 52:1219–1226

Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

Clerkx EJ, El-Lithy ME, Vierling E, Ruys GJ, Blankestijn-De Vries H, Groot SP, Vreugdenhil D, Koornneef M (2004) Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. Plant Physiol 135:432–443

Delaney TP, Friedrich L, Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci USA 92:6602–6606

Deslandes L, Pileur F, Liaubet L, Camut S, Can C, Williams K, Holub E, Beynon J, Arlat M, Marco Y (1998) Genetic characterization of RRS1 a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soft rot pathogen, Ralstonia solanacearum. Mol Plant Microbe Interact 11:659–667

Desveaux D, Subramaniam R, Despres C, Mess J-N, Levesque C, Fobert PR, Dangl JL, Brisson N (2004) A “whirly” transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Developmental Cell 6:229–240

Dong X (2004) NPR1, all things considered. Curr Opin Plant Biol 7:547–552

Fan J, Crooks C, Lamb C (2008) High-throughput quantitative luminescence assay of the growth in planta of Pseudomonas syringae chromosomally tagged with Photorhabdus luminescens luxCDABE. Plant J 53:393–399

Genoud T, Metraux JP (1999) Crosstalk in plant cell signaling: structure and function of the genetic network. Trends Plant Sci 4:503–507

Glazebrook J, Rogers EE, Ausubel FM (1996) Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143:973–982

Hien Dao TT, Puig RC, Kim HK, Erkelens C, Lefeber AW, Linthorst HJ, Choi YH, Verpoorte R (2009) Effect of benzothiadiazole on the metabolome of Arabidopsis thaliana. Plant Physiol Biochem 47:146–152

Huang WE, Wang H, Zheng H, Huang L, Singer AC, Thompson I, Whiteley AS (2005) Chromosomally located gene fusions constructed in Acinetobacter sp. ADP1 for the detection of salicylate. Environ Microbiol 7:1339–1348

Katagiri F, Thilmony S, He SY (2002) The Arabidopsis thaliana–Pseudomonas syringae interaction. The Arabidopsis book. American Society of Plant Biologists. Rockville, USA. doi: 10.1199/tab.0111

Kliebenstein DJ, Figuth A, Mitchell-Olds T (2002) Genetic architecture of plastic methyl jasmonate responses in Arabidopsis thaliana. Genetics 161:1685–1696

Koumproglou R, Wilkes TM, Townson P, Wang XY, Beynon J, Pooni HS, Newbury HJ, Kearsey MJ (2002) STAIRS: a new genetic resource for functional genomic studies of Arabidopsis. Plant J 31:355–364

Lawton K, Weymann K, Friedrich L, Vernooij B, Uknes S, Ryals J (1995) Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Mol Plant Microbe Interact 8:863–870

Lawton KA, Friedrich L, Hunt M, Weymann K, Delaney T, Kessmann H, Staub T, Ryals J (1996) Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J 10:71–82

Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

Lister C, Dean C (1993) Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J 4:745–750

Loudet O, Chaillou S, Camilleri C, Bouchez D, Daniel-Vedele F (2002) Bay-0 x Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theor Appl Genet 104:1173–1184

Magliano TM, Botto JF, Godoy AV, Symonds VV, Lloyd AM, Casal JJ (2005) New Arabidopsis recombinant inbred lines (Landsberg erecta x Nossen) reveal natural variation in phytochrome-mediated responses. Plant Physiol 138:1126–1135

Maier F, Zwicker S, Hückelhoven A, Meißner M, Funk J, Pfitzner AJP, Pfitzner UM (2011) NonEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) and some NPR1-related proteins are sensitive to salicylic acid. Mol Plant Pathol 12:73–91

McKhann HI, Camilleri C, Bérard A, Bataillon T, David JL, Reboud X, Le Corre V, Caloustian C, Gut IG, Brune D (2004) Nested core collections maximizing genetic diversity in Arabidopsis thaliana. Plant J 38:193–202

Molina A, Hunt MD, Ryals JA (1998) Impaired fungicide activity in plants blocked in disease resistance signal transduction. Plant Cell 10:1903–1914

Nawrath C, Heck S, Parinthawong N, Metraux JP (2002) EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14:275–286

Nawrath C, Métraux JP, Genoud T (2005) Chemical signals in plant resistance: salicylic acid. In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer US, Dordrecht, pp 143–165

Niederl S, Kirsch T, Riederer M, Schreiber L (1998) Co-permeability of 3H-labeled water and 14C-labeled organic acids across isolated plant cuticles. Investigating cuticular paths of diffusion and predicting cuticular transpiration. Plant Physiol 116:117–123

Perchepied L, Kroj T, Tronchet M, Loudet O, Roby D (2006) Natural variation in partial resistance to Pseudomonas syringae is controlled by two major QTLs in Arabidopsis thaliana. PLoS ONE 1:e123

Pieterse CM, Van Loon LC (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7:456–464

Pylatuik JD, Fobert PR (2005) Comparison of transcript profiling on Arabidopsis microarray platform technologies. Plant Mol Biol 58:609–624

Rhoads DM, McIntosh L (1992) Salicylic acid regulation of respiration in higher plants: alternative oxidase expression. Plant Cell 4:1131–1139

Ritter C, Dangl JL (1996) Interference between two specific pathogen recognition events mediated by distinct plant disease resistance genes. Plant Cell 8:251–257

Shah J, Tsui F, Klessig DF (1997) Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant Microbe Interact 10:69–78

Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CM (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770

Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X (2009) Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137:860–872

Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

Tornero P, Dangl JL (2001) A high throughput method for quantifying growth of phytopathogenic bacteria in Arabidopsis thaliana. Plant J 28:475–481

Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4:645–656

van Berloo R (2008) GGT 2.0: versatile software for visualization and analysis of genetic data. J Hered 99:232–236

van Leeuwen H, Kliebenstein DJ, West MA, Kim K, van Poecke R, Katagiri F, Michelmore RW, Doerge RW, St Clair DA (2007) Natural variation among Arabidopsis thaliana accessions for transcriptome response to exogenous salicylic acid. Plant Cell 19:2099–2110

Vlot AC, Klessig DF, Park SW (2008) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11:436–442

Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

Wang S, Basten CJ, Zeng Z-B (2007) Windows QTL Cartographer. Department of Statistics, North Carolina State University. Raleigh, USA

Wang L, Tsuda K, Sato M, Cohen JD, Katagiri F, Glazebrook J (2009) Arabidopsis CaM binding protein CBP60 g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog 5:e1000301

Weigel RR, Bauscher C, Pfitzner AJ, Pfitzner UM (2001) NIMIN-1, NIMIN-2 and NIMIN-3, members of a novel family of proteins from Arabidopsis that interact with NPR1/NIM1, a key regulator of systemic acquired resistance in plants. Plant Mol Biol 46:143–160

Weigel RR, Pfitzner UM, Gatz C (2005) Interaction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis. Plant Cell 17:1279–1291

Werner JD, Borevitz JO, Warthmann N, Trainer GT, Ecker JR, Chory J, Weigel D (2005) Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proc Natl Acad Sci USA 102:2460–2465

Wiermer M, Feys BJ, Parker JE (2005) Plant immunity: the EDS1 regulatory node. Curr Opin Plant Biol 8:383–389

Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

Wilson IW, Schiff CL, Hughes DE, Somerville SC (2001) Quantitative trait loci analysis of powdery mildew disease resistance in the Arabidopsis thaliana accession kashmir-1. Genetics 158:1301–1309

You IS, Ghosal D, Gunsalus IC (1991) Nucleotide sequence analysis of the Pseudomonas putida PpG7 salicylate hydroxylase gene (nahG) and its 3’-flanking region. Biochemistry 30:1635–1641

Zhang Y, Fan W, Kinkema M, Li X, Dong X (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci USA 96:6523–6528

[-]

This item appears in the following Collection(s)

Show full item record