- -

Quantitative genetic analysis of salicylic acid perception in Arabidopsis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Quantitative genetic analysis of salicylic acid perception in Arabidopsis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dobón Alonso, Albor es_ES
dc.contributor.author Canet, J.V es_ES
dc.contributor.author Perales, L es_ES
dc.contributor.author Tornero Feliciano, Pablo es_ES
dc.date.accessioned 2017-07-06T06:25:49Z
dc.date.available 2017-07-06T06:25:49Z
dc.date.issued 2011-10
dc.identifier.issn 0032-0935
dc.identifier.uri http://hdl.handle.net/10251/84526
dc.description.abstract [EN] Salicylic acid (SA) is a phytohormone required for a full resistance against some pathogens in Arabidopsis, and NPR1 (Non-Expressor of Pathogenesis Related Genes 1) is the only gene with a strong effect on resistance induced by SA which has been described. There can be additional components of SA perception that escape the traditional approach of mutagenesis. An alternative to that approach is searching in the natural variation of Arabidopsis. Different methods of analyzing the variation between ecotypes have been tried and it has been found that measuring the growth of a virulent isolate of Pseudomonas syringae after the exogenous application of SA is the most effective one. Two ecotypes, Edi-0 and Stw-0, have been crossed, and their F2 has been studied. There are two significant quantitative trait loci (QTLs) in this population, and there is one QTL in each one of the existing mapping populations Col-4 × Laer-0 and Laer-0 × No-0. They have different characteristics: while one QTL is only detectable at low concentrations of SA, the other acts after the point of crosstalk with methyl jasmonate signalling. Three of the QTLs have candidates described in SA perception as NPR1, its interactors, and a calmodulin binding protein. © 2011 Springer-Verlag. es_ES
dc.description.sponsorship This work was supported by the Ministerio de Ciencia e Innovacion (MICINN) of Spain (grant BIO201018896 to PT, a JAE-CSIC Fellowship to JVC and a FPI-MICINN to AD). We appreciate the BTH provided by Syngenta and the genotyping by CEGEN (Fundacion Genoma Espana). en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Planta es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Arabidopsis es_ES
dc.subject Defence es_ES
dc.subject Natural variation es_ES
dc.subject Salicylic acid es_ES
dc.subject Pseudomonas syringae es_ES
dc.title Quantitative genetic analysis of salicylic acid perception in Arabidopsis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00425-011-1436-6
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2010-18896/ES/RESPUESTA AL ACIDO SALICILICO EN ARABIDOPSIS THALIANA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Dobón Alonso, A.; Canet, J.; Perales, L.; Tornero Feliciano, P. (2011). Quantitative genetic analysis of salicylic acid perception in Arabidopsis. Planta. 234(4):671-684. https://doi.org/10.1007/s00425-011-1436-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s00425-011-1436-6 es_ES
dc.description.upvformatpinicio 671 es_ES
dc.description.upvformatpfin 684 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 234 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 218790 es_ES
dc.identifier.pmid 21614499
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Adam L, Somerville SC (1996) Genetic characterization of five powdery mildew resistance loci in Arabidopsis thaliana. Plant J 9:341–356 es_ES
dc.description.references Alonso-Blanco C, Koorneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5:22–29 es_ES
dc.description.references Alonso-Blanco C, El-Assal SE, Coupland G, Koornneef M (1998a) Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Genetics 149:749–764 es_ES
dc.description.references Alonso-Blanco C, Peeters A, Koornneef M, Lister C, Dean C, van den Bosch N, Pot J, Kuiper M (1998b) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J 14:259–271 es_ES
dc.description.references Alonso-Blanco C, Koornneef M, van Ooijen JW (2006) QTL analysis. Methods Mol Biol 323:79–99 es_ES
dc.description.references Bakker EG, Traw MB, Toomajian C, Kreitman M, Bergelson J (2008) Low levels of polymorphism in genes that control the activation of defense response in Arabidopsis thaliana. Genetics 178:2031–2043 es_ES
dc.description.references Bilgin DD, Zavala JA, Zhu J, Clough SJ, Ort DR, Delucia EH (2010) Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ 33:1597–1613 es_ES
dc.description.references Canet JV, Dobón A, Ibáñez F, Perales L, Tornero P (2010a) Resistance and biomass in Arabidopsis: a new model for salicylic acid perception. Plant Biotech J 8:126–141 es_ES
dc.description.references Canet JV, Dobón A, Roig A, Tornero P (2010b) Structure-function analysis of npr1 alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid. Plant Cell Environ 33:1911–1922 es_ES
dc.description.references Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592 es_ES
dc.description.references Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63 es_ES
dc.description.references Chen HJ, Hou WC, Kuc J, Lin YH (2001) Ca2+-dependent and Ca2+-independent excretion modes of salicylic acid in tobacco cell suspension culture. J Exp Bot 52:1219–1226 es_ES
dc.description.references Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971 es_ES
dc.description.references Clerkx EJ, El-Lithy ME, Vierling E, Ruys GJ, Blankestijn-De Vries H, Groot SP, Vreugdenhil D, Koornneef M (2004) Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. Plant Physiol 135:432–443 es_ES
dc.description.references Delaney TP, Friedrich L, Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci USA 92:6602–6606 es_ES
dc.description.references Deslandes L, Pileur F, Liaubet L, Camut S, Can C, Williams K, Holub E, Beynon J, Arlat M, Marco Y (1998) Genetic characterization of RRS1 a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soft rot pathogen, Ralstonia solanacearum. Mol Plant Microbe Interact 11:659–667 es_ES
dc.description.references Desveaux D, Subramaniam R, Despres C, Mess J-N, Levesque C, Fobert PR, Dangl JL, Brisson N (2004) A “whirly” transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Developmental Cell 6:229–240 es_ES
dc.description.references Dong X (2004) NPR1, all things considered. Curr Opin Plant Biol 7:547–552 es_ES
dc.description.references Fan J, Crooks C, Lamb C (2008) High-throughput quantitative luminescence assay of the growth in planta of Pseudomonas syringae chromosomally tagged with Photorhabdus luminescens luxCDABE. Plant J 53:393–399 es_ES
dc.description.references Genoud T, Metraux JP (1999) Crosstalk in plant cell signaling: structure and function of the genetic network. Trends Plant Sci 4:503–507 es_ES
dc.description.references Glazebrook J, Rogers EE, Ausubel FM (1996) Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143:973–982 es_ES
dc.description.references Hien Dao TT, Puig RC, Kim HK, Erkelens C, Lefeber AW, Linthorst HJ, Choi YH, Verpoorte R (2009) Effect of benzothiadiazole on the metabolome of Arabidopsis thaliana. Plant Physiol Biochem 47:146–152 es_ES
dc.description.references Huang WE, Wang H, Zheng H, Huang L, Singer AC, Thompson I, Whiteley AS (2005) Chromosomally located gene fusions constructed in Acinetobacter sp. ADP1 for the detection of salicylate. Environ Microbiol 7:1339–1348 es_ES
dc.description.references Katagiri F, Thilmony S, He SY (2002) The Arabidopsis thaliana–Pseudomonas syringae interaction. The Arabidopsis book. American Society of Plant Biologists. Rockville, USA. doi: 10.1199/tab.0111 es_ES
dc.description.references Kliebenstein DJ, Figuth A, Mitchell-Olds T (2002) Genetic architecture of plastic methyl jasmonate responses in Arabidopsis thaliana. Genetics 161:1685–1696 es_ES
dc.description.references Koumproglou R, Wilkes TM, Townson P, Wang XY, Beynon J, Pooni HS, Newbury HJ, Kearsey MJ (2002) STAIRS: a new genetic resource for functional genomic studies of Arabidopsis. Plant J 31:355–364 es_ES
dc.description.references Lawton K, Weymann K, Friedrich L, Vernooij B, Uknes S, Ryals J (1995) Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Mol Plant Microbe Interact 8:863–870 es_ES
dc.description.references Lawton KA, Friedrich L, Hunt M, Weymann K, Delaney T, Kessmann H, Staub T, Ryals J (1996) Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J 10:71–82 es_ES
dc.description.references Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331 es_ES
dc.description.references Lister C, Dean C (1993) Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J 4:745–750 es_ES
dc.description.references Loudet O, Chaillou S, Camilleri C, Bouchez D, Daniel-Vedele F (2002) Bay-0 x Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theor Appl Genet 104:1173–1184 es_ES
dc.description.references Magliano TM, Botto JF, Godoy AV, Symonds VV, Lloyd AM, Casal JJ (2005) New Arabidopsis recombinant inbred lines (Landsberg erecta x Nossen) reveal natural variation in phytochrome-mediated responses. Plant Physiol 138:1126–1135 es_ES
dc.description.references Maier F, Zwicker S, Hückelhoven A, Meißner M, Funk J, Pfitzner AJP, Pfitzner UM (2011) NonEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) and some NPR1-related proteins are sensitive to salicylic acid. Mol Plant Pathol 12:73–91 es_ES
dc.description.references McKhann HI, Camilleri C, Bérard A, Bataillon T, David JL, Reboud X, Le Corre V, Caloustian C, Gut IG, Brune D (2004) Nested core collections maximizing genetic diversity in Arabidopsis thaliana. Plant J 38:193–202 es_ES
dc.description.references Molina A, Hunt MD, Ryals JA (1998) Impaired fungicide activity in plants blocked in disease resistance signal transduction. Plant Cell 10:1903–1914 es_ES
dc.description.references Nawrath C, Heck S, Parinthawong N, Metraux JP (2002) EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14:275–286 es_ES
dc.description.references Nawrath C, Métraux JP, Genoud T (2005) Chemical signals in plant resistance: salicylic acid. In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer US, Dordrecht, pp 143–165 es_ES
dc.description.references Niederl S, Kirsch T, Riederer M, Schreiber L (1998) Co-permeability of 3H-labeled water and 14C-labeled organic acids across isolated plant cuticles. Investigating cuticular paths of diffusion and predicting cuticular transpiration. Plant Physiol 116:117–123 es_ES
dc.description.references Perchepied L, Kroj T, Tronchet M, Loudet O, Roby D (2006) Natural variation in partial resistance to Pseudomonas syringae is controlled by two major QTLs in Arabidopsis thaliana. PLoS ONE 1:e123 es_ES
dc.description.references Pieterse CM, Van Loon LC (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7:456–464 es_ES
dc.description.references Pylatuik JD, Fobert PR (2005) Comparison of transcript profiling on Arabidopsis microarray platform technologies. Plant Mol Biol 58:609–624 es_ES
dc.description.references Rhoads DM, McIntosh L (1992) Salicylic acid regulation of respiration in higher plants: alternative oxidase expression. Plant Cell 4:1131–1139 es_ES
dc.description.references Ritter C, Dangl JL (1996) Interference between two specific pathogen recognition events mediated by distinct plant disease resistance genes. Plant Cell 8:251–257 es_ES
dc.description.references Shah J, Tsui F, Klessig DF (1997) Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant Microbe Interact 10:69–78 es_ES
dc.description.references Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CM (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770 es_ES
dc.description.references Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X (2009) Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137:860–872 es_ES
dc.description.references Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956 es_ES
dc.description.references Tornero P, Dangl JL (2001) A high throughput method for quantifying growth of phytopathogenic bacteria in Arabidopsis thaliana. Plant J 28:475–481 es_ES
dc.description.references Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4:645–656 es_ES
dc.description.references van Berloo R (2008) GGT 2.0: versatile software for visualization and analysis of genetic data. J Hered 99:232–236 es_ES
dc.description.references van Leeuwen H, Kliebenstein DJ, West MA, Kim K, van Poecke R, Katagiri F, Michelmore RW, Doerge RW, St Clair DA (2007) Natural variation among Arabidopsis thaliana accessions for transcriptome response to exogenous salicylic acid. Plant Cell 19:2099–2110 es_ES
dc.description.references Vlot AC, Klessig DF, Park SW (2008) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11:436–442 es_ES
dc.description.references Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206 es_ES
dc.description.references Wang S, Basten CJ, Zeng Z-B (2007) Windows QTL Cartographer. Department of Statistics, North Carolina State University. Raleigh, USA es_ES
dc.description.references Wang L, Tsuda K, Sato M, Cohen JD, Katagiri F, Glazebrook J (2009) Arabidopsis CaM binding protein CBP60 g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog 5:e1000301 es_ES
dc.description.references Weigel RR, Bauscher C, Pfitzner AJ, Pfitzner UM (2001) NIMIN-1, NIMIN-2 and NIMIN-3, members of a novel family of proteins from Arabidopsis that interact with NPR1/NIM1, a key regulator of systemic acquired resistance in plants. Plant Mol Biol 46:143–160 es_ES
dc.description.references Weigel RR, Pfitzner UM, Gatz C (2005) Interaction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis. Plant Cell 17:1279–1291 es_ES
dc.description.references Werner JD, Borevitz JO, Warthmann N, Trainer GT, Ecker JR, Chory J, Weigel D (2005) Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proc Natl Acad Sci USA 102:2460–2465 es_ES
dc.description.references Wiermer M, Feys BJ, Parker JE (2005) Plant immunity: the EDS1 regulatory node. Curr Opin Plant Biol 8:383–389 es_ES
dc.description.references Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565 es_ES
dc.description.references Wilson IW, Schiff CL, Hughes DE, Somerville SC (2001) Quantitative trait loci analysis of powdery mildew disease resistance in the Arabidopsis thaliana accession kashmir-1. Genetics 158:1301–1309 es_ES
dc.description.references You IS, Ghosal D, Gunsalus IC (1991) Nucleotide sequence analysis of the Pseudomonas putida PpG7 salicylate hydroxylase gene (nahG) and its 3’-flanking region. Biochemistry 30:1635–1641 es_ES
dc.description.references Zhang Y, Fan W, Kinkema M, Li X, Dong X (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci USA 96:6523–6528 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem