- -

A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lorente, D. es_ES
dc.contributor.author Martínez-Martínez, F. es_ES
dc.contributor.author Rupérez Moreno, María José es_ES
dc.contributor.author Lago, M. A. es_ES
dc.contributor.author Martínez-Sober, M. es_ES
dc.contributor.author Escandell-Montero, P. es_ES
dc.contributor.author Martínez-Martínez, J. M. es_ES
dc.contributor.author Martínez-Sanchis, S. es_ES
dc.contributor.author Serrano-López, A.J. es_ES
dc.contributor.author Monserrat, C. es_ES
dc.contributor.author Martín-Guerrero, J.D. es_ES
dc.date.accessioned 2017-07-06T14:15:44Z
dc.date.available 2017-07-06T14:15:44Z
dc.date.issued 2017-04-01
dc.identifier.issn 0957-4174
dc.identifier.uri http://hdl.handle.net/10251/84603
dc.description.abstract Progress in biomechanical modelling of human soft tissue is the basis for the development of new clinical applications capable of improving the diagnosis and treatment of some diseases (e.g. cancer), as well as the surgical planning and guidance of some interventions. The finite element method (FEM) is one of the most popular techniques used to predict the deformation of the human soft tissue due to its high accuracy. However, FEM has an associated high computational cost, which makes it difficult its integration in real-time computer-aided surgery systems. An alternative for simulating the mechanical behaviour of human organs in real time comes from the use of machine learning (ML) techniques, which are much faster than FEM. This paper assesses the feasibility of ML methods for modelling the biomechanical behaviour of the human liver during the breathing process, which is crucial for guiding surgeons during interventions where it is critical to track this deformation (e.g. some specific kind of biopsies) or for the accurate application of radiotherapy dose to liver tumours. For this purpose, different ML regression models were investigated, including three tree-based methods (decision trees, random forests and extremely randomised trees) and other two simpler regression techniques (dummy model and linear regression). In order to build and validate the ML models, a labelled data set was constructed from modelling the deformation of eight ex-vivo human livers using FEM. The best prediction performance was obtained using extremely randomised trees, with a mean error of 0.07 mm and all the samples with an error under 1 mm. The achieved results lay the foundation for the future development of some real-time software capable of simulating the human liver deformation during the breathing process during clinical interventions. es_ES
dc.description.sponsorship This work has been funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through research projects TIN2014-52033-R and DPI2013-40859-R, both also supported by European FEDER funds. The authors acknowledge the kind collaboration of the personnel from the hospital involved in the research. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Expert Systems with Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Soft tissue deformation es_ES
dc.subject Biomechanical behaviour es_ES
dc.subject Liver es_ES
dc.subject Machine learning es_ES
dc.subject Tree-based regression es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.eswa.2016.11.037
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-40859-R/ES/SISTEMA DE SEGUIMIENTO DE LESIONES TUMORALES HEPATICAS MEDIANTE APROXIMACIONES BIOMECANICAS PARA DIAGNOSIS TEMPRANA Y PLANIFICACION DE TRATAMIENTO./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-52033-R/ES/SIMULACION DEL COMPORTAMIENTO BIOMECANICO DEL TEJIDO BLANDO EN TIEMPO REAL MEDIANTE INTELIGENCIA COMPUTACIONAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Lorente, D.; Martínez-Martínez, F.; Rupérez Moreno, MJ.; Lago, MA.; Martínez-Sober, M.; Escandell-Montero, P.; Martínez-Martínez, JM.... (2017). A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning. Expert Systems with Applications. 71:342-357. doi:10.1016/j.eswa.2016.11.037 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.eswa.2016.11.037 es_ES
dc.description.upvformatpinicio 342 es_ES
dc.description.upvformatpfin 357 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 71 es_ES
dc.relation.senia 323612 es_ES
dc.identifier.eissn 1873-6793
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem