- -

Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds

Mostrar el registro completo del ítem

Deplaine, H.; Lebourg, MM.; Ripalda, P.; Vidaurre Garayo, AJ.; Sanz-Ramos, P.; Mora, G.; Prósper, F.... (2013). Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 101B(1):173-186. https://doi.org/10.1002/jbm.b.32831

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/84804

Ficheros en el ítem

Metadatos del ítem

Título: Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds
Autor: Deplaine, Harmony Lebourg, Myriam Madeleine Ripalda, P Vidaurre Garayo, Ana Jesús Sanz-Ramos, Patricia Mora, Gonzalo Prósper, Felipe Ochoa, I. Doblare Castellano, Manuel Gómez Ribelles, José Luís IZAL AZCARATE, IÑIGO Gallego Ferrer, Gloria
Entidad UPV: Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Fecha difusión:
Resumen:
[EN] Polymer ceramic composites obtained as the result of a mineralization process hold great promise for the future of tissue engineering. Simulated body fluids (SBFs) are widely used for the mineralization of polymer ...[+]
Palabras clave: Bioactive material , Biomimetic , Osteogenesis , Composite/hard tissue , Scaffolds
Derechos de uso: Cerrado
Fuente:
Journal of Biomedical Materials Research Part B: Applied Biomaterials. (issn: 1552-4973 )
DOI: 10.1002/jbm.b.32831
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/jbm.b.32831
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2010-20399-C04-04/ES/DISEÑO, CONSTRUCCION Y VALIDACION DE UNA PLATAFORMA BIOMIMETICA PARA LA EVALUACION FUNCIONAL Y OPTIMIZACION DE CONSTRUCTOS DE INGENIERIA TISULAR PARA LA REPARACION DE CARTILAG/
info:eu-repo/grantAgreement/MICINN//DPI2010-20399-C04-01/ES/DISEÑO, CONSTRUCCION Y VALIDACION DE UNA PLATAFORMA BIOMIMETICA PARA LA EVALUACION FUNCIONAL Y OPTIMIZACION DE CONSTRUCTOS DE INGENIERIA TISULAR DE CARTILAGO ARTICULAR/
info:eu-repo/grantAgreement/MICINN//DPI2010-20399-C04-03/ES/DISEÑO Y FABRICACION DE UNA PLATAFORMA BIOMIMETICA TIPO SCAFFOLD%2FSOPORTE PARA LA REGENERACION DEL CARTILAGO ARTICULAR/
Agradecimientos:
Contract grant sponsor: CIBER-BBN, VI National R&D&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, Instituto de Salud Carlos III with assistance from the European Regional Development Fund
Tipo: Artículo

References

Lee, K., Chan, C. K., Patil, N., & Goodman, S. B. (2009). Cell therapy for bone regeneration-Bench to bedside. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 89B(1), 252-263. doi:10.1002/jbm.b.31199

Saito, N., & Takaoka, K. (2003). New synthetic biodegradable polymers as BMP carriers for bone tissue engineering. Biomaterials, 24(13), 2287-2293. doi:10.1016/s0142-9612(03)00040-1

Hollinger, J. O., Winn, S., & Bonadio, J. (2000). Options for Tissue Engineering to Address Challenges of the Aging Skeleton. Tissue Engineering, 6(4), 341-350. doi:10.1089/107632700418065 [+]
Lee, K., Chan, C. K., Patil, N., & Goodman, S. B. (2009). Cell therapy for bone regeneration-Bench to bedside. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 89B(1), 252-263. doi:10.1002/jbm.b.31199

Saito, N., & Takaoka, K. (2003). New synthetic biodegradable polymers as BMP carriers for bone tissue engineering. Biomaterials, 24(13), 2287-2293. doi:10.1016/s0142-9612(03)00040-1

Hollinger, J. O., Winn, S., & Bonadio, J. (2000). Options for Tissue Engineering to Address Challenges of the Aging Skeleton. Tissue Engineering, 6(4), 341-350. doi:10.1089/107632700418065

Vallet-Regí, M., & Ruiz-Hernández, E. (2011). Bioceramics: From Bone Regeneration to Cancer Nanomedicine. Advanced Materials, 23(44), 5177-5218. doi:10.1002/adma.201101586

Fu, Q., Saiz, E., Rahaman, M. N., & Tomsia, A. P. (2011). Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Materials Science and Engineering: C, 31(7), 1245-1256. doi:10.1016/j.msec.2011.04.022

Van Landuyt, P., Li, F., Keustermans, J. P., Streydio, J. M., Delannay, F., & Munting, E. (1995). The influence of high sintering temperatures on the mechanical properties of hydroxylapatite. Journal of Materials Science: Materials in Medicine, 6(1), 8-13. doi:10.1007/bf00121239

Chou, L., Marek, B., & Wagner, W. R. (1999). Effects of hydroxylapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro. Biomaterials, 20(10), 977-985. doi:10.1016/s0142-9612(98)00254-3

Pati, F., Datta, P., Adhikari, B., Dhara, S., Ghosh, K., & Mohapatra, P. K. D. (2012). Collagen scaffolds derived from fresh water fish origin and their biocompatibility. Journal of Biomedical Materials Research Part A, 100A(4), 1068-1079. doi:10.1002/jbm.a.33280

GONG, Y., ZHOU, Q., GAO, C., & SHEN, J. (2007). In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method. Acta Biomaterialia, 3(4), 531-540. doi:10.1016/j.actbio.2006.12.008

Ishii, D., Ying, T. H., Mahara, A., Murakami, S., Yamaoka, T., Lee, W., & Iwata, T. (2009). In Vivo Tissue Response and Degradation Behavior of PLLA and Stereocomplexed PLA Nanofibers. Biomacromolecules, 10(2), 237-242. doi:10.1021/bm8009363

Lee, B. N., Kim, D. Y., Kang, H. J., Kwon, J. S., Park, Y. H., Chun, H. J., … Kim, M. S. (2012). In vivo biofunctionality comparison of different topographic PLLA scaffolds. Journal of Biomedical Materials Research Part A, 100A(7), 1751-1760. doi:10.1002/jbm.a.34135

Boccaccini, A. R., Erol, M., Stark, W. J., Mohn, D., Hong, Z., & Mano, J. F. (2010). Polymer/bioactive glass nanocomposites for biomedical applications: A review. Composites Science and Technology, 70(13), 1764-1776. doi:10.1016/j.compscitech.2010.06.002

Li, D., Ye, C., Zhu, Y., Gou, Z., & Gao, C. (2012). Enhancement of osteogenesis by poly(lactide-co-glycolide) sponges loaded with surface-embedded hydroxyapatite particles and rhBMP-2. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100B(4), 1103-1113. doi:10.1002/jbm.b.32677

Kitsugi, T., Yamamuro, T., Nakamura, T., Higashi, S., Kakutani, Y., Hyakuna, K., … Shibuya, T. (1986). Bone bonding behavior of three kinds of apatite containing glass ceramics. Journal of Biomedical Materials Research, 20(9), 1295-1307. doi:10.1002/jbm.820200906

Palmer, L. C., Newcomb, C. J., Kaltz, S. R., Spoerke, E. D., & Stupp, S. I. (2008). Biomimetic Systems for Hydroxyapatite Mineralization Inspired By Bone and Enamel. Chemical Reviews, 108(11), 4754-4783. doi:10.1021/cr8004422

Kim, H. J., Kim, U.-J., Kim, H. S., Li, C., Wada, M., Leisk, G. G., & Kaplan, D. L. (2008). Bone tissue engineering with premineralized silk scaffolds. Bone, 42(6), 1226-1234. doi:10.1016/j.bone.2008.02.007

Davis, H. E., Case, E. M., Miller, S. L., Genetos, D. C., & Leach, J. K. (2011). Osteogenic response to BMP-2 of hMSCs grown on apatite-coated scaffolds. Biotechnology and Bioengineering, 108(11), 2727-2735. doi:10.1002/bit.23227

Jiao, Y., Liu, Z., Zhou, C., & Cui, F. (2007). Formation of bone-like apatite on poly(L-lactide) to improve osteoblast-like compatibility in vitro and in vivo. Frontiers of Materials Science in China, 1(2), 140-146. doi:10.1007/s11706-007-0025-x

Lee, T.-J., Kang, S.-W., Bhang, S. H., Kang, J. M., & Kim, B.-S. (2010). Apatite-Coated Porous Poly(lactic-co-glycolic acid) Microspheres as an Injectable Bone Substitute. Journal of Biomaterials Science, Polymer Edition, 21(5), 635-645. doi:10.1163/156856209x434656

WANG, H., JI, J., ZHANG, W., ZHANG, Y., JIANG, J., WU, Z., … CHU, P. (2009). Biocompatibility and bioactivity of plasma-treated biodegradable poly(butylene succinate). Acta Biomaterialia, 5(1), 279-287. doi:10.1016/j.actbio.2008.07.017

Prasertsung, I., Mongkolnavin, R., Kanokpanont, S., & Damrongsakkul, S. (2010). The effects of pulsed inductively coupled plasma (PICP) on physical properties and biocompatibility of crosslinked gelatin films. International Journal of Biological Macromolecules, 46(1), 72-78. doi:10.1016/j.ijbiomac.2009.11.001

Yildirim, E. D., Ayan, H., Vasilets, V. N., Fridman, A., Guceri, S., & Sun, W. (2008). Effect of Dielectric Barrier Discharge Plasma on the Attachment and Proliferation of Osteoblasts Cultured over Poly(ɛ-caprolactone) Scaffolds. Plasma Processes and Polymers, 5(1), 58-66. doi:10.1002/ppap.200700041

Lebourg, M., Antón, J. S., & Ribelles, J. L. G. (2009). Hybrid structure in PCL-HAp scaffold resulting from biomimetic apatite growth. Journal of Materials Science: Materials in Medicine, 21(1), 33-44. doi:10.1007/s10856-009-3838-6

Ho, M.-H., Kuo, P.-Y., Hsieh, H.-J., Hsien, T.-Y., Hou, L.-T., Lai, J.-Y., & Wang, D.-M. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 25(1), 129-138. doi:10.1016/s0142-9612(03)00483-6

Müller, L., & Müller, F. A. (2006). Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. Acta Biomaterialia, 2(2), 181-189. doi:10.1016/j.actbio.2005.11.001

Deplaine, H., Ribelles, J. L. G., & Ferrer, G. G. (2010). Effect of the content of hydroxyapatite nanoparticles on the properties and bioactivity of poly(l-lactide) – Hybrid membranes. Composites Science and Technology, 70(13), 1805-1812. doi:10.1016/j.compscitech.2010.06.009

Lebourg, M., Antón, J. S., & Ribelles, J. L. G. (2008). Porous membranes of PLLA–PCL blend for tissue engineering applications. European Polymer Journal, 44(7), 2207-2218. doi:10.1016/j.eurpolymj.2008.04.033

Santamaría, V. A., Deplaine, H., Mariggió, D., Villanueva-Molines, A. R., García-Aznar, J. M., Ribelles, J. L. G., … Ochoa, I. (2012). Influence of the macro and micro-porous structure on the mechanical behavior of poly(l-lactic acid) scaffolds. Journal of Non-Crystalline Solids, 358(23), 3141-3149. doi:10.1016/j.jnoncrysol.2012.08.001

Vallés Lluch, A., Ferrer, G. G., & Pradas, M. M. (2009). Surface modification of P(EMA-co-HEA)/SiO2 nanohybrids for faster hydroxyapatite deposition in simulated body fluid? Colloids and Surfaces B: Biointerfaces, 70(2), 218-225. doi:10.1016/j.colsurfb.2008.12.027

Gibson, L. J., & Ashby, M. F. (1997). Cellular Solids. doi:10.1017/cbo9781139878326

Zhang, R., & Ma, P. X. (1999). Porous poly(L-lactic acid)/apatite composites created by biomimetic process. Journal of Biomedical Materials Research, 45(4), 285-293. doi:10.1002/(sici)1097-4636(19990615)45:4<285::aid-jbm2>3.0.co;2-2

Chen, J., Chu, B., & Hsiao, B. S. (2006). Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds. Journal of Biomedical Materials Research Part A, 79A(2), 307-317. doi:10.1002/jbm.a.30799

Yang, C., Cheng, K., Weng, W., & Yang, C. (2008). OTS-modified HA and its toughening effect on PLLA/HA porous composite. Journal of Materials Science: Materials in Medicine, 20(3), 667-672. doi:10.1007/s10856-008-3604-1

Bourque, H., Laurin, I., Pézolet, M., Klass, J. M., Lennox, R. B., & Brown, G. R. (2001). Investigation of the Poly(l-lactide)/Poly(d-lactide) Stereocomplex at the Air−Water Interface by Polarization Modulation Infrared Reflection Absorption Spectroscopy†. Langmuir, 17(19), 5842-5849. doi:10.1021/la0009792

Yasuniwa, M., Tsubakihara, S., Iura, K., Ono, Y., Dan, Y., & Takahashi, K. (2006). Crystallization behavior of poly(l-lactic acid). Polymer, 47(21), 7554-7563. doi:10.1016/j.polymer.2006.08.054

Garlotta, D. (2001). Journal of Polymers and the Environment, 9(2), 63-84. doi:10.1023/a:1020200822435

Koutsopoulos, S. (2002). Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. Journal of Biomedical Materials Research, 62(4), 600-612. doi:10.1002/jbm.10280

Oliveira, A. (2003). Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structures. Biomaterials, 24(15), 2575-2584. doi:10.1016/s0142-9612(03)00060-7

Li, J., Zhu, D., Yin, J., Liu, Y., Yao, F., & Yao, K. (2010). Formation of nano-hydroxyapatite crystal in situ in chitosan–pectin polyelectrolyte complex network. Materials Science and Engineering: C, 30(6), 795-803. doi:10.1016/j.msec.2010.03.011

Qu, X., Cui, W., Yang, F., Min, C., Shen, H., Bei, J., & Wang, S. (2007). The effect of oxygen plasma pretreatment and incubation in modified simulated body fluids on the formation of bone-like apatite on poly(lactide-co-glycolide) (70/30). Biomaterials, 28(1), 9-18. doi:10.1016/j.biomaterials.2006.08.024

Lu, X., & Leng, Y. (2005). Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials, 26(10), 1097-1108. doi:10.1016/j.biomaterials.2004.05.034

Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907-2915. doi:10.1016/j.biomaterials.2006.01.017

Hong, Z., Reis, R. L., & Mano, J. F. (2008). Preparation and in vitro characterization of scaffolds of poly(l-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomaterialia, 4(5), 1297-1306. doi:10.1016/j.actbio.2008.03.007

Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413-3431. doi:10.1016/j.biomaterials.2006.01.039

Budyanto, L., Goh, Y. Q., & Ooi, C. P. (2008). Fabrication of porous poly(L-lactide) (PLLA) scaffolds for tissue engineering using liquid–liquid phase separation and freeze extraction. Journal of Materials Science: Materials in Medicine, 20(1), 105-111. doi:10.1007/s10856-008-3545-8

Zhang, R., & Ma, P. X. (1999). Poly(?-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. Journal of Biomedical Materials Research, 44(4), 446-455. doi:10.1002/(sici)1097-4636(19990315)44:4<446::aid-jbm11>3.0.co;2-f

Wei, G., & Ma, P. X. (2004). Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials, 25(19), 4749-4757. doi:10.1016/j.biomaterials.2003.12.005

Šupová, M. (2009). Problem of hydroxyapatite dispersion in polymer matrices: a review. Journal of Materials Science: Materials in Medicine, 20(6), 1201-1213. doi:10.1007/s10856-009-3696-2

Wang, T., Chow, L. C., Frukhtbeyn, S. A., Ting, A. H., Dong, Q., Yang, M., & Mitchell, J. W. (2011). Improve the strength of PLA/HA composite through the use of surface initiated polymerization and phosphonic acid coupling agent. Journal of Research of the National Institute of Standards and Technology, 116(5), 785. doi:10.6028/jres.116.021

Kang, Y., Xu, X., Yin, G., Chen, A., Liao, L., Yao, Y., … Liao, X. (2007). A comparative study of the in vitro degradation of poly(l-lactic acid)/β-tricalcium phosphate scaffold in static and dynamic simulated body fluid. European Polymer Journal, 43(5), 1768-1778. doi:10.1016/j.eurpolymj.2007.02.043

Ehrenfried, L. M., Farrar, D., & Cameron, R. E. (2009). Degradation Properties of Co-Continuous Calcium−Phosphate−Polyester Composites. Biomacromolecules, 10(7), 1976-1985. doi:10.1021/bm900397d

Ehrenfried, L. M., Patel, M. H., & Cameron, R. E. (2007). The effect of tri-calcium phosphate (TCP) addition on the degradation of polylactide-co-glycolide (PLGA). Journal of Materials Science: Materials in Medicine, 19(1), 459-466. doi:10.1007/s10856-006-0061-6

Agrawal, C. M., & Athanasiou, K. A. (1997). Technique to control pH in vicinity of biodegrading PLA-PGA implants. Journal of Biomedical Materials Research, 38(2), 105-114. doi:10.1002/(sici)1097-4636(199722)38:2<105::aid-jbm4>3.0.co;2-u

Rainer, A., Spadaccio, C., Sedati, P., De Marco, F., Carotti, S., Lusini, M., … Trombetta, M. (2011). Electrospun Hydroxyapatite-Functionalized PLLA Scaffold: Potential Applications in Sternal Bone Healing. Annals of Biomedical Engineering, 39(7), 1882-1890. doi:10.1007/s10439-011-0289-2

Niu, X., Fan, Y., Liu, X., Li, X., Li, P., Wang, J., … Feng, Q. (2011). Repair of Bone Defect in Femoral Condyle Using Microencapsulated Chitosan, Nanohydroxyapatite/Collagen and Poly(L-Lactide)-Based Microsphere-Scaffold Delivery System. Artificial Organs, 35(7), E119-E128. doi:10.1111/j.1525-1594.2011.01274.x

Li, J., Hong, J., Zheng, Q., Guo, X., Lan, S., Cui, F., … Chen, C. (2011). Repair of rat cranial bone defects with nHAC/PLLA and BMP-2-related peptide or rhBMP-2. Journal of Orthopaedic Research, 29(11), 1745-1752. doi:10.1002/jor.21439

Cai, Y. Z., Wang, L. L., Cai, H. X., Qi, Y. Y., Zou, X. H., & Ouyang, H. W. (2010). Electrospun nanofibrous matrix improves the regeneration of dense cortical bone. Journal of Biomedical Materials Research Part A, 95A(1), 49-57. doi:10.1002/jbm.a.32816

Coraça, D. C., Duek, E. A. R., Padovani, C. A., & Camilli, J. A. (2008). Osteointegration of poly(l-lactic acid)PLLA and poly(l-lactic acid)PLLA/poly(ethylene oxide)PEO implants in rat tibiae. Journal of Materials Science: Materials in Medicine, 19(7), 2699-2704. doi:10.1007/s10856-008-3397-2

Huang, X., Yang, D., Yan, W., Shi, Z., Feng, J., Gao, Y., … Yan, S. (2007). Osteochondral repair using the combination of fibroblast growth factor and amorphous calcium phosphate/poly(l-lactic acid) hybrid materials. Biomaterials, 28(20), 3091-3100. doi:10.1016/j.biomaterials.2007.03.017

Schofer, M. D., Veltum, A., Theisen, C., Chen, F., Agarwal, S., Fuchs-Winkelmann, S., & Paletta, J. R. J. (2011). Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on growth and osteogenic differentiation of human mesenchymal stem cells. Journal of Materials Science: Materials in Medicine, 22(7), 1753-1762. doi:10.1007/s10856-011-4341-4

Whited, B. M., Whitney, J. R., Hofmann, M. C., Xu, Y., & Rylander, M. N. (2011). Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds. Biomaterials, 32(9), 2294-2304. doi:10.1016/j.biomaterials.2010.12.003

Schofer, M. D., Boudriot, U., Leifeld, I., Sütterlin, R. I., Rudisile, M., Wendorff, J. H., … Fuchs-Winkelmann, S. (2009). Characterization of a PLLA-Collagen I Blend Nanofiber Scaffold with Respect to Growth and Osteogenic Differentiation of Human Mesenchymal Stem Cells. The Scientific World JOURNAL, 9, 118-129. doi:10.1100/tsw.2009.13

Vayssade, M. (2009). Stromal cells. Frontiers in Bioscience, Volume(14), 210. doi:10.2741/3241

Spadaccio, C., Rainer, A., Trombetta, M., Vadalá, G., Chello, M., Covino, E., … Genovese, J. A. (2009). Poly-l-Lactic Acid/Hydroxyapatite Electrospun Nanocomposites Induce Chondrogenic Differentiation of Human MSC. Annals of Biomedical Engineering, 37(7), 1376-1389. doi:10.1007/s10439-009-9704-3

Lin, L., Chow, K. L., & Leng, Y. (2009). Study of hydroxyapatite osteoinductivity with an osteogenic differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research Part A, 89A(2), 326-335. doi:10.1002/jbm.a.31994

Chen, F., Lam, W. M., Lin, C. J., Qiu, G. X., Wu, Z. H., Luk, K. D. K., & Lu, W. W. (2007). Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface:In vitroevaluation using mesenchymal stem cells. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 82B(1), 183-191. doi:10.1002/jbm.b.30720

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem