- -

Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds

Show simple item record

Files in this item

dc.contributor.author Deplaine, Harmony es_ES
dc.contributor.author Lebourg, Myriam Madeleine es_ES
dc.contributor.author Ripalda, P es_ES
dc.contributor.author Vidaurre Garayo, Ana Jesús es_ES
dc.contributor.author Sanz-Ramos, Patricia es_ES
dc.contributor.author Mora, Gonzalo es_ES
dc.contributor.author Prósper, Felipe es_ES
dc.contributor.author Ochoa, I. es_ES
dc.contributor.author Doblare Castellano, Manuel es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author IZAL AZCARATE, IÑIGO es_ES
dc.contributor.author Gallego Ferrer, Gloria es_ES
dc.date.accessioned 2017-07-10T08:12:55Z
dc.date.available 2017-07-10T08:12:55Z
dc.date.issued 2013-01
dc.identifier.issn 1552-4973
dc.identifier.uri http://hdl.handle.net/10251/84804
dc.description.abstract [EN] Polymer ceramic composites obtained as the result of a mineralization process hold great promise for the future of tissue engineering. Simulated body fluids (SBFs) are widely used for the mineralization of polymer scaffolds. In this work an exhaustive study with the aim of optimizing the mineralization process on a poly(L-lactic acid) (PLLA) macroporous scaffold has been performed. We observed that when an air plasma treatment is applied to the PLLA scaffold its hydroxyapatite nucleation ability is considerably improved. However, plasma treatment only allows apatite deposition on the surface of the scaffold but not in its interior. When a 5 wt % of synthetic hydroxyapatite (HAp) nanoparticles is mixed with PLLA a more abundant biomimetic hydroxyapatite layer grows inside the scaffold in SBF. The morphology, amount, and composition of the generated biomimetic hydroxyapatite layer on the pores surface have been analyzed. Large mineralization times are harmful to pure PLLA as it rapidly degrades and its elastic compression modulus significantly decreases. Degradation is retarded in the composite scaffolds because of the faster and extensive biomimetic apatite deposition and the role of HAp to control the pH. Mineralized scaffolds, covered by an apatite layer in SBF, were implanted in osteochondral lesions performed in the medial femoral condyle of healthy sheep. We observed that the presence of biomimetic hydroxyapatite on the pore s surface of the composite scaffold produces a better integration in the subchondral bone, in comparison to bare PLLA scaffolds. es_ES
dc.description.sponsorship Contract grant sponsor: CIBER-BBN, VI National R&D&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, Instituto de Salud Carlos III with assistance from the European Regional Development Fund en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Journal of Biomedical Materials Research Part B: Applied Biomaterials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bioactive material es_ES
dc.subject Biomimetic es_ES
dc.subject Osteogenesis es_ES
dc.subject Composite/hard tissue es_ES
dc.subject Scaffolds es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/jbm.b.32831
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20399-C04-04/ES/DISEÑO, CONSTRUCCION Y VALIDACION DE UNA PLATAFORMA BIOMIMETICA PARA LA EVALUACION FUNCIONAL Y OPTIMIZACION DE CONSTRUCTOS DE INGENIERIA TISULAR PARA LA REPARACION DE CARTILAG/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20399-C04-01/ES/DISEÑO, CONSTRUCCION Y VALIDACION DE UNA PLATAFORMA BIOMIMETICA PARA LA EVALUACION FUNCIONAL Y OPTIMIZACION DE CONSTRUCTOS DE INGENIERIA TISULAR DE CARTILAGO ARTICULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20399-C04-03/ES/DISEÑO Y FABRICACION DE UNA PLATAFORMA BIOMIMETICA TIPO SCAFFOLD%2FSOPORTE PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Deplaine, H.; Lebourg, MM.; Ripalda, P.; Vidaurre Garayo, AJ.; Sanz-Ramos, P.; Mora, G.; Prósper, F.... (2013). Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 101B(1):173-186. https://doi.org/10.1002/jbm.b.32831 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/jbm.b.32831 es_ES
dc.description.upvformatpinicio 173 es_ES
dc.description.upvformatpfin 186 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 101B es_ES
dc.description.issue 1 es_ES
dc.relation.senia 237392 es_ES
dc.description.references Lee, K., Chan, C. K., Patil, N., & Goodman, S. B. (2009). Cell therapy for bone regeneration-Bench to bedside. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 89B(1), 252-263. doi:10.1002/jbm.b.31199 es_ES
dc.description.references Saito, N., & Takaoka, K. (2003). New synthetic biodegradable polymers as BMP carriers for bone tissue engineering. Biomaterials, 24(13), 2287-2293. doi:10.1016/s0142-9612(03)00040-1 es_ES
dc.description.references Hollinger, J. O., Winn, S., & Bonadio, J. (2000). Options for Tissue Engineering to Address Challenges of the Aging Skeleton. Tissue Engineering, 6(4), 341-350. doi:10.1089/107632700418065 es_ES
dc.description.references Vallet-Regí, M., & Ruiz-Hernández, E. (2011). Bioceramics: From Bone Regeneration to Cancer Nanomedicine. Advanced Materials, 23(44), 5177-5218. doi:10.1002/adma.201101586 es_ES
dc.description.references Fu, Q., Saiz, E., Rahaman, M. N., & Tomsia, A. P. (2011). Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Materials Science and Engineering: C, 31(7), 1245-1256. doi:10.1016/j.msec.2011.04.022 es_ES
dc.description.references Van Landuyt, P., Li, F., Keustermans, J. P., Streydio, J. M., Delannay, F., & Munting, E. (1995). The influence of high sintering temperatures on the mechanical properties of hydroxylapatite. Journal of Materials Science: Materials in Medicine, 6(1), 8-13. doi:10.1007/bf00121239 es_ES
dc.description.references Chou, L., Marek, B., & Wagner, W. R. (1999). Effects of hydroxylapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro. Biomaterials, 20(10), 977-985. doi:10.1016/s0142-9612(98)00254-3 es_ES
dc.description.references Pati, F., Datta, P., Adhikari, B., Dhara, S., Ghosh, K., & Mohapatra, P. K. D. (2012). Collagen scaffolds derived from fresh water fish origin and their biocompatibility. Journal of Biomedical Materials Research Part A, 100A(4), 1068-1079. doi:10.1002/jbm.a.33280 es_ES
dc.description.references GONG, Y., ZHOU, Q., GAO, C., & SHEN, J. (2007). In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method. Acta Biomaterialia, 3(4), 531-540. doi:10.1016/j.actbio.2006.12.008 es_ES
dc.description.references Ishii, D., Ying, T. H., Mahara, A., Murakami, S., Yamaoka, T., Lee, W., & Iwata, T. (2009). In Vivo Tissue Response and Degradation Behavior of PLLA and Stereocomplexed PLA Nanofibers. Biomacromolecules, 10(2), 237-242. doi:10.1021/bm8009363 es_ES
dc.description.references Lee, B. N., Kim, D. Y., Kang, H. J., Kwon, J. S., Park, Y. H., Chun, H. J., … Kim, M. S. (2012). In vivo biofunctionality comparison of different topographic PLLA scaffolds. Journal of Biomedical Materials Research Part A, 100A(7), 1751-1760. doi:10.1002/jbm.a.34135 es_ES
dc.description.references Boccaccini, A. R., Erol, M., Stark, W. J., Mohn, D., Hong, Z., & Mano, J. F. (2010). Polymer/bioactive glass nanocomposites for biomedical applications: A review. Composites Science and Technology, 70(13), 1764-1776. doi:10.1016/j.compscitech.2010.06.002 es_ES
dc.description.references Li, D., Ye, C., Zhu, Y., Gou, Z., & Gao, C. (2012). Enhancement of osteogenesis by poly(lactide-co-glycolide) sponges loaded with surface-embedded hydroxyapatite particles and rhBMP-2. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100B(4), 1103-1113. doi:10.1002/jbm.b.32677 es_ES
dc.description.references Kitsugi, T., Yamamuro, T., Nakamura, T., Higashi, S., Kakutani, Y., Hyakuna, K., … Shibuya, T. (1986). Bone bonding behavior of three kinds of apatite containing glass ceramics. Journal of Biomedical Materials Research, 20(9), 1295-1307. doi:10.1002/jbm.820200906 es_ES
dc.description.references Palmer, L. C., Newcomb, C. J., Kaltz, S. R., Spoerke, E. D., & Stupp, S. I. (2008). Biomimetic Systems for Hydroxyapatite Mineralization Inspired By Bone and Enamel. Chemical Reviews, 108(11), 4754-4783. doi:10.1021/cr8004422 es_ES
dc.description.references Kim, H. J., Kim, U.-J., Kim, H. S., Li, C., Wada, M., Leisk, G. G., & Kaplan, D. L. (2008). Bone tissue engineering with premineralized silk scaffolds. Bone, 42(6), 1226-1234. doi:10.1016/j.bone.2008.02.007 es_ES
dc.description.references Davis, H. E., Case, E. M., Miller, S. L., Genetos, D. C., & Leach, J. K. (2011). Osteogenic response to BMP-2 of hMSCs grown on apatite-coated scaffolds. Biotechnology and Bioengineering, 108(11), 2727-2735. doi:10.1002/bit.23227 es_ES
dc.description.references Jiao, Y., Liu, Z., Zhou, C., & Cui, F. (2007). Formation of bone-like apatite on poly(L-lactide) to improve osteoblast-like compatibility in vitro and in vivo. Frontiers of Materials Science in China, 1(2), 140-146. doi:10.1007/s11706-007-0025-x es_ES
dc.description.references Lee, T.-J., Kang, S.-W., Bhang, S. H., Kang, J. M., & Kim, B.-S. (2010). Apatite-Coated Porous Poly(lactic-co-glycolic acid) Microspheres as an Injectable Bone Substitute. Journal of Biomaterials Science, Polymer Edition, 21(5), 635-645. doi:10.1163/156856209x434656 es_ES
dc.description.references WANG, H., JI, J., ZHANG, W., ZHANG, Y., JIANG, J., WU, Z., … CHU, P. (2009). Biocompatibility and bioactivity of plasma-treated biodegradable poly(butylene succinate). Acta Biomaterialia, 5(1), 279-287. doi:10.1016/j.actbio.2008.07.017 es_ES
dc.description.references Prasertsung, I., Mongkolnavin, R., Kanokpanont, S., & Damrongsakkul, S. (2010). The effects of pulsed inductively coupled plasma (PICP) on physical properties and biocompatibility of crosslinked gelatin films. International Journal of Biological Macromolecules, 46(1), 72-78. doi:10.1016/j.ijbiomac.2009.11.001 es_ES
dc.description.references Yildirim, E. D., Ayan, H., Vasilets, V. N., Fridman, A., Guceri, S., & Sun, W. (2008). Effect of Dielectric Barrier Discharge Plasma on the Attachment and Proliferation of Osteoblasts Cultured over Poly(ɛ-caprolactone) Scaffolds. Plasma Processes and Polymers, 5(1), 58-66. doi:10.1002/ppap.200700041 es_ES
dc.description.references Lebourg, M., Antón, J. S., & Ribelles, J. L. G. (2009). Hybrid structure in PCL-HAp scaffold resulting from biomimetic apatite growth. Journal of Materials Science: Materials in Medicine, 21(1), 33-44. doi:10.1007/s10856-009-3838-6 es_ES
dc.description.references Ho, M.-H., Kuo, P.-Y., Hsieh, H.-J., Hsien, T.-Y., Hou, L.-T., Lai, J.-Y., & Wang, D.-M. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 25(1), 129-138. doi:10.1016/s0142-9612(03)00483-6 es_ES
dc.description.references Müller, L., & Müller, F. A. (2006). Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. Acta Biomaterialia, 2(2), 181-189. doi:10.1016/j.actbio.2005.11.001 es_ES
dc.description.references Deplaine, H., Ribelles, J. L. G., & Ferrer, G. G. (2010). Effect of the content of hydroxyapatite nanoparticles on the properties and bioactivity of poly(l-lactide) – Hybrid membranes. Composites Science and Technology, 70(13), 1805-1812. doi:10.1016/j.compscitech.2010.06.009 es_ES
dc.description.references Lebourg, M., Antón, J. S., & Ribelles, J. L. G. (2008). Porous membranes of PLLA–PCL blend for tissue engineering applications. European Polymer Journal, 44(7), 2207-2218. doi:10.1016/j.eurpolymj.2008.04.033 es_ES
dc.description.references Santamaría, V. A., Deplaine, H., Mariggió, D., Villanueva-Molines, A. R., García-Aznar, J. M., Ribelles, J. L. G., … Ochoa, I. (2012). Influence of the macro and micro-porous structure on the mechanical behavior of poly(l-lactic acid) scaffolds. Journal of Non-Crystalline Solids, 358(23), 3141-3149. doi:10.1016/j.jnoncrysol.2012.08.001 es_ES
dc.description.references Vallés Lluch, A., Ferrer, G. G., & Pradas, M. M. (2009). Surface modification of P(EMA-co-HEA)/SiO2 nanohybrids for faster hydroxyapatite deposition in simulated body fluid? Colloids and Surfaces B: Biointerfaces, 70(2), 218-225. doi:10.1016/j.colsurfb.2008.12.027 es_ES
dc.description.references Gibson, L. J., & Ashby, M. F. (1997). Cellular Solids. doi:10.1017/cbo9781139878326 es_ES
dc.description.references Zhang, R., & Ma, P. X. (1999). Porous poly(L-lactic acid)/apatite composites created by biomimetic process. Journal of Biomedical Materials Research, 45(4), 285-293. doi:10.1002/(sici)1097-4636(19990615)45:4<285::aid-jbm2>3.0.co;2-2 es_ES
dc.description.references Chen, J., Chu, B., & Hsiao, B. S. (2006). Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds. Journal of Biomedical Materials Research Part A, 79A(2), 307-317. doi:10.1002/jbm.a.30799 es_ES
dc.description.references Yang, C., Cheng, K., Weng, W., & Yang, C. (2008). OTS-modified HA and its toughening effect on PLLA/HA porous composite. Journal of Materials Science: Materials in Medicine, 20(3), 667-672. doi:10.1007/s10856-008-3604-1 es_ES
dc.description.references Bourque, H., Laurin, I., Pézolet, M., Klass, J. M., Lennox, R. B., & Brown, G. R. (2001). Investigation of the Poly(l-lactide)/Poly(d-lactide) Stereocomplex at the Air−Water Interface by Polarization Modulation Infrared Reflection Absorption Spectroscopy†. Langmuir, 17(19), 5842-5849. doi:10.1021/la0009792 es_ES
dc.description.references Yasuniwa, M., Tsubakihara, S., Iura, K., Ono, Y., Dan, Y., & Takahashi, K. (2006). Crystallization behavior of poly(l-lactic acid). Polymer, 47(21), 7554-7563. doi:10.1016/j.polymer.2006.08.054 es_ES
dc.description.references Garlotta, D. (2001). Journal of Polymers and the Environment, 9(2), 63-84. doi:10.1023/a:1020200822435 es_ES
dc.description.references Koutsopoulos, S. (2002). Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. Journal of Biomedical Materials Research, 62(4), 600-612. doi:10.1002/jbm.10280 es_ES
dc.description.references Oliveira, A. (2003). Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structures. Biomaterials, 24(15), 2575-2584. doi:10.1016/s0142-9612(03)00060-7 es_ES
dc.description.references Li, J., Zhu, D., Yin, J., Liu, Y., Yao, F., & Yao, K. (2010). Formation of nano-hydroxyapatite crystal in situ in chitosan–pectin polyelectrolyte complex network. Materials Science and Engineering: C, 30(6), 795-803. doi:10.1016/j.msec.2010.03.011 es_ES
dc.description.references Qu, X., Cui, W., Yang, F., Min, C., Shen, H., Bei, J., & Wang, S. (2007). The effect of oxygen plasma pretreatment and incubation in modified simulated body fluids on the formation of bone-like apatite on poly(lactide-co-glycolide) (70/30). Biomaterials, 28(1), 9-18. doi:10.1016/j.biomaterials.2006.08.024 es_ES
dc.description.references Lu, X., & Leng, Y. (2005). Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials, 26(10), 1097-1108. doi:10.1016/j.biomaterials.2004.05.034 es_ES
dc.description.references Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907-2915. doi:10.1016/j.biomaterials.2006.01.017 es_ES
dc.description.references Hong, Z., Reis, R. L., & Mano, J. F. (2008). Preparation and in vitro characterization of scaffolds of poly(l-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomaterialia, 4(5), 1297-1306. doi:10.1016/j.actbio.2008.03.007 es_ES
dc.description.references Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413-3431. doi:10.1016/j.biomaterials.2006.01.039 es_ES
dc.description.references Budyanto, L., Goh, Y. Q., & Ooi, C. P. (2008). Fabrication of porous poly(L-lactide) (PLLA) scaffolds for tissue engineering using liquid–liquid phase separation and freeze extraction. Journal of Materials Science: Materials in Medicine, 20(1), 105-111. doi:10.1007/s10856-008-3545-8 es_ES
dc.description.references Zhang, R., & Ma, P. X. (1999). Poly(?-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. Journal of Biomedical Materials Research, 44(4), 446-455. doi:10.1002/(sici)1097-4636(19990315)44:4<446::aid-jbm11>3.0.co;2-f es_ES
dc.description.references Wei, G., & Ma, P. X. (2004). Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials, 25(19), 4749-4757. doi:10.1016/j.biomaterials.2003.12.005 es_ES
dc.description.references Šupová, M. (2009). Problem of hydroxyapatite dispersion in polymer matrices: a review. Journal of Materials Science: Materials in Medicine, 20(6), 1201-1213. doi:10.1007/s10856-009-3696-2 es_ES
dc.description.references Wang, T., Chow, L. C., Frukhtbeyn, S. A., Ting, A. H., Dong, Q., Yang, M., & Mitchell, J. W. (2011). Improve the strength of PLA/HA composite through the use of surface initiated polymerization and phosphonic acid coupling agent. Journal of Research of the National Institute of Standards and Technology, 116(5), 785. doi:10.6028/jres.116.021 es_ES
dc.description.references Kang, Y., Xu, X., Yin, G., Chen, A., Liao, L., Yao, Y., … Liao, X. (2007). A comparative study of the in vitro degradation of poly(l-lactic acid)/β-tricalcium phosphate scaffold in static and dynamic simulated body fluid. European Polymer Journal, 43(5), 1768-1778. doi:10.1016/j.eurpolymj.2007.02.043 es_ES
dc.description.references Ehrenfried, L. M., Farrar, D., & Cameron, R. E. (2009). Degradation Properties of Co-Continuous Calcium−Phosphate−Polyester Composites. Biomacromolecules, 10(7), 1976-1985. doi:10.1021/bm900397d es_ES
dc.description.references Ehrenfried, L. M., Patel, M. H., & Cameron, R. E. (2007). The effect of tri-calcium phosphate (TCP) addition on the degradation of polylactide-co-glycolide (PLGA). Journal of Materials Science: Materials in Medicine, 19(1), 459-466. doi:10.1007/s10856-006-0061-6 es_ES
dc.description.references Agrawal, C. M., & Athanasiou, K. A. (1997). Technique to control pH in vicinity of biodegrading PLA-PGA implants. Journal of Biomedical Materials Research, 38(2), 105-114. doi:10.1002/(sici)1097-4636(199722)38:2<105::aid-jbm4>3.0.co;2-u es_ES
dc.description.references Rainer, A., Spadaccio, C., Sedati, P., De Marco, F., Carotti, S., Lusini, M., … Trombetta, M. (2011). Electrospun Hydroxyapatite-Functionalized PLLA Scaffold: Potential Applications in Sternal Bone Healing. Annals of Biomedical Engineering, 39(7), 1882-1890. doi:10.1007/s10439-011-0289-2 es_ES
dc.description.references Niu, X., Fan, Y., Liu, X., Li, X., Li, P., Wang, J., … Feng, Q. (2011). Repair of Bone Defect in Femoral Condyle Using Microencapsulated Chitosan, Nanohydroxyapatite/Collagen and Poly(L-Lactide)-Based Microsphere-Scaffold Delivery System. Artificial Organs, 35(7), E119-E128. doi:10.1111/j.1525-1594.2011.01274.x es_ES
dc.description.references Li, J., Hong, J., Zheng, Q., Guo, X., Lan, S., Cui, F., … Chen, C. (2011). Repair of rat cranial bone defects with nHAC/PLLA and BMP-2-related peptide or rhBMP-2. Journal of Orthopaedic Research, 29(11), 1745-1752. doi:10.1002/jor.21439 es_ES
dc.description.references Cai, Y. Z., Wang, L. L., Cai, H. X., Qi, Y. Y., Zou, X. H., & Ouyang, H. W. (2010). Electrospun nanofibrous matrix improves the regeneration of dense cortical bone. Journal of Biomedical Materials Research Part A, 95A(1), 49-57. doi:10.1002/jbm.a.32816 es_ES
dc.description.references Coraça, D. C., Duek, E. A. R., Padovani, C. A., & Camilli, J. A. (2008). Osteointegration of poly(l-lactic acid)PLLA and poly(l-lactic acid)PLLA/poly(ethylene oxide)PEO implants in rat tibiae. Journal of Materials Science: Materials in Medicine, 19(7), 2699-2704. doi:10.1007/s10856-008-3397-2 es_ES
dc.description.references Huang, X., Yang, D., Yan, W., Shi, Z., Feng, J., Gao, Y., … Yan, S. (2007). Osteochondral repair using the combination of fibroblast growth factor and amorphous calcium phosphate/poly(l-lactic acid) hybrid materials. Biomaterials, 28(20), 3091-3100. doi:10.1016/j.biomaterials.2007.03.017 es_ES
dc.description.references Schofer, M. D., Veltum, A., Theisen, C., Chen, F., Agarwal, S., Fuchs-Winkelmann, S., & Paletta, J. R. J. (2011). Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on growth and osteogenic differentiation of human mesenchymal stem cells. Journal of Materials Science: Materials in Medicine, 22(7), 1753-1762. doi:10.1007/s10856-011-4341-4 es_ES
dc.description.references Whited, B. M., Whitney, J. R., Hofmann, M. C., Xu, Y., & Rylander, M. N. (2011). Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds. Biomaterials, 32(9), 2294-2304. doi:10.1016/j.biomaterials.2010.12.003 es_ES
dc.description.references Schofer, M. D., Boudriot, U., Leifeld, I., Sütterlin, R. I., Rudisile, M., Wendorff, J. H., … Fuchs-Winkelmann, S. (2009). Characterization of a PLLA-Collagen I Blend Nanofiber Scaffold with Respect to Growth and Osteogenic Differentiation of Human Mesenchymal Stem Cells. The Scientific World JOURNAL, 9, 118-129. doi:10.1100/tsw.2009.13 es_ES
dc.description.references Vayssade, M. (2009). Stromal cells. Frontiers in Bioscience, Volume(14), 210. doi:10.2741/3241 es_ES
dc.description.references Spadaccio, C., Rainer, A., Trombetta, M., Vadalá, G., Chello, M., Covino, E., … Genovese, J. A. (2009). Poly-l-Lactic Acid/Hydroxyapatite Electrospun Nanocomposites Induce Chondrogenic Differentiation of Human MSC. Annals of Biomedical Engineering, 37(7), 1376-1389. doi:10.1007/s10439-009-9704-3 es_ES
dc.description.references Lin, L., Chow, K. L., & Leng, Y. (2009). Study of hydroxyapatite osteoinductivity with an osteogenic differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research Part A, 89A(2), 326-335. doi:10.1002/jbm.a.31994 es_ES
dc.description.references Chen, F., Lam, W. M., Lin, C. J., Qiu, G. X., Wu, Z. H., Luk, K. D. K., & Lu, W. W. (2007). Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface:In vitroevaluation using mesenchymal stem cells. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 82B(1), 183-191. doi:10.1002/jbm.b.30720 es_ES


This item appears in the following Collection(s)

Show simple item record