- -

Some new bi-accelerator two-point methods for solving nonlinear equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Some new bi-accelerator two-point methods for solving nonlinear equations

Mostrar el registro completo del ítem

Cordero Barbero, A.; Lotfi, T.; Torregrosa Sánchez, JR.; Assari, P.; Mahdiani, K. (2016). Some new bi-accelerator two-point methods for solving nonlinear equations. Computational and Applied Mathematics. 35(1):251-267. doi:10.1007/s40314-014-0192-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/84807

Ficheros en el ítem

Metadatos del ítem

Título: Some new bi-accelerator two-point methods for solving nonlinear equations
Autor: Cordero Barbero, Alicia Lotfi, Taher Torregrosa Sánchez, Juan Ramón Assari, Paria Mahdiani, Katayoun
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
In this work, we extract some new and efficient two-point methods with memory from their corresponding optimal methods without memory, to estimate simple roots of a given nonlinear equation. Applying two accelerator ...[+]
Palabras clave: Multi-point iterative methods , With and without memory methods , Kung and Traub's conjecture , Efficiency index , Dynamical plane , Basin of attraction , Derivative-free method
Derechos de uso: Reserva de todos los derechos
Fuente:
Computational and Applied Mathematics. (issn: 0101-8205 )
DOI: 10.1007/s40314-014-0192-1
Editorial:
Springer Verlag (Germany)
Versión del editor: http://doi.org/10.1007/s40314-014-0192-1
Agradecimientos:
The authors thank to the anonymous referees for their suggestions to improve the final version of the paper. The second author would like to thank Hamedan Brach of Islamic Azad University for partial financial support in ...[+]
Tipo: Artículo

References

Babajee DKR (2012) Several improvements of the 2-point third order midpoint iterative method using weight functions. Appl Math Comput 218:7958–7966

Chicharro FI, Cordero A, Torregrosa JR (2013) Drawing dynamical and parameters planes of iterative families and methods. Sci World J. Article ID 780153, 11 pp

Chun C, Lee MY (2013) A new optimal eighth-order family of iterative methods for the solution of nonlinear equations. Appl Math Comput 223:506–519 [+]
Babajee DKR (2012) Several improvements of the 2-point third order midpoint iterative method using weight functions. Appl Math Comput 218:7958–7966

Chicharro FI, Cordero A, Torregrosa JR (2013) Drawing dynamical and parameters planes of iterative families and methods. Sci World J. Article ID 780153, 11 pp

Chun C, Lee MY (2013) A new optimal eighth-order family of iterative methods for the solution of nonlinear equations. Appl Math Comput 223:506–519

Cordero A, Hueso JL, Martínez E, Torregrosa JR (2010) New modifications of Potra–Ptàk’s method with optimal fourth and eighth orders of convergence. J Comput Appl Math 234:2969–2976

Cordero A, Lotfi T, Bakhtiari P, Torregrosa JR (2014) An efficient two-parametric family with memory for nonlinear equations. Numer Algor. doi: 10.1007/s11075-014-9846-8

Geum YH, Kim YI (2011) A uniparametric family of three-step eighth-order multipoint iterative methods for simple roots. Appl Math Lett 24:929–935

Heydari M, Hosseini SH, Loghmani GB (2011) On two new families of iterative methods for solving nonlinear equations with optimal order. Appl Anal Discret Math 5:93–109

Jay IO (2001) A note on Q-order of convergence. BIT Numer Math 41:422–429

Khattri SK, Steihaug T (2013) Algorithm for forming derivative-free optimal methods. Numer Algor. doi: 10.1007/s11075-013-9715-x

Kou J, Wang X, Li Y (2010) Some eighth-order root-finding three-step methods. Commun Nonlinear Sci Numer Simul 15:536–544

Kung HT, Traub JF (1974) Optimal order of one-point and multipoint iteration. J Assoc Comput Math 21:634–651

Liu X, Wang X (2012) A convergence improvement factor and higher-order methods for solving nonlinear equations. Appl Math Comput 218:7871–7875

Lotfi T, Tavakoli E (2014) On a new efficient Steffensen-like iterative class by applying a suitable self-accelerator parameter. Sci World J. Article ID 769758, 9 pp. doi: 10.1155/2014/769758

Lotfi T, Soleymani F, Shateyi S, Assari P, Khaksar Haghani F (2014a) New mono- and biaccelerator iterative methods with memory for nonlinear equations. Abstr Appl Anal. Article ID 705674, 8 pp. doi: 10.1155/2014/705674

Lotfi T, Soleymani F, Noori Z, Kiliman A, Khaksar Haghani F (2014b) Efficient iterative methods with and without memory possessing high efficiency indices. Discret Dyn Nat Soc. Article ID 912796, 9 pp. doi: 10.1155/2014/912796

Magreñan AA (2014) A new tool to study real dynamics: the convergence plane. arXiv:1310.3986 [math.NA]

Ortega JM, Rheimbolt WC (1970) Iterative solution of nonlinear equations in several variables. Academic Press, New York

Ostrowski AM (1966) Solutions of equations and systems of equations. Academic Press, New York-London

Petković MS, Ilić S, Džunić J (2010) Derivative free two-point methods with and without memory for solving nonlinear equations. Appl Math Comput 217(5):1887–1895

Petković MS, Neta B, Petković LD, Džunić J (2014) Multipoint methods for solving nonlinear equations: a survey. Appl Math Comput 226(2):635–660

Ren H, Wu Q, Bi W (2009) A class of two-step Steffensen type methods with fourth-order convergence. Appl Math Comput 209:206–210

Soleymani F, Sharifi M, Mousavi S (2012) An improvement of Ostrowski’s and King’s techniques with optimal convergence order eight. J Optim Theory Appl 153:225–236

Soleimani F, Soleymani F, Shateyi S (2013) Some iterative methods free from derivatives and their basins of attraction for nonlinear equations. Discret Dyn Nat Soc. Article ID 301718, 10 pp

Thukral R (2011) Eighth-order iterative methods without derivatives for solving nonlinear equation. ISRN Appl Math. Article ID 693787, 12 pp

Traub JF (1964) Iterative methods for the solution of equations. Prentice Hall, New York

Zheng Q, Li J, Huang F (2011) An optimal Steffensen-type family for solving nonlinear equations. Appl Math Comput 217:9592–9597

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem