- -

Some new bi-accelerator two-point methods for solving nonlinear equations

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Some new bi-accelerator two-point methods for solving nonlinear equations

Show simple item record

Files in this item

dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Lotfi, Taher es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author Assari, Paria es_ES
dc.contributor.author Mahdiani, Katayoun es_ES
dc.date.accessioned 2017-07-10T08:29:11Z
dc.date.available 2017-07-10T08:29:11Z
dc.date.issued 2016-04
dc.identifier.issn 0101-8205
dc.identifier.uri http://hdl.handle.net/10251/84807
dc.description.abstract In this work, we extract some new and efficient two-point methods with memory from their corresponding optimal methods without memory, to estimate simple roots of a given nonlinear equation. Applying two accelerator parameters in each iteration, we try to increase the convergence order from four to seven without any new functional evaluation. To this end, firstly we modify three optimal methods without memory in such a way that we could generate methods with memory as efficient as possible. Then, convergence analysis is put forward. Finally, the applicability of the developed methods on some numerical examples is examined and illustrated by means of dynamical tools, both in smooth and in nonsmooth functions. es_ES
dc.description.sponsorship The authors thank to the anonymous referees for their suggestions to improve the final version of the paper. The second author would like to thank Hamedan Brach of Islamic Azad University for partial financial support in this research. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation Hamedan Brach of Islamic Azad University es_ES
dc.relation.ispartof Computational and Applied Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Multi-point iterative methods es_ES
dc.subject With and without memory methods es_ES
dc.subject Kung and Traub's conjecture es_ES
dc.subject Efficiency index es_ES
dc.subject Dynamical plane es_ES
dc.subject Basin of attraction es_ES
dc.subject Derivative-free method es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Some new bi-accelerator two-point methods for solving nonlinear equations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s40314-014-0192-1
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cordero Barbero, A.; Lotfi, T.; Torregrosa Sánchez, JR.; Assari, P.; Mahdiani, K. (2016). Some new bi-accelerator two-point methods for solving nonlinear equations. Computational and Applied Mathematics. 35(1):251-267. doi:10.1007/s40314-014-0192-1 es_ES
dc.description.accrualMethod Senia es_ES
dc.relation.publisherversion http://doi.org/10.1007/s40314-014-0192-1 es_ES
dc.description.upvformatpinicio 251 es_ES
dc.description.upvformatpfin 267 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 316642 es_ES
dc.relation.references Babajee DKR (2012) Several improvements of the 2-point third order midpoint iterative method using weight functions. Appl Math Comput 218:7958–7966 es_ES
dc.relation.references Chicharro FI, Cordero A, Torregrosa JR (2013) Drawing dynamical and parameters planes of iterative families and methods. Sci World J. Article ID 780153, 11 pp es_ES
dc.relation.references Chun C, Lee MY (2013) A new optimal eighth-order family of iterative methods for the solution of nonlinear equations. Appl Math Comput 223:506–519 es_ES
dc.relation.references Cordero A, Hueso JL, Martínez E, Torregrosa JR (2010) New modifications of Potra–Ptàk’s method with optimal fourth and eighth orders of convergence. J Comput Appl Math 234:2969–2976 es_ES
dc.relation.references Cordero A, Lotfi T, Bakhtiari P, Torregrosa JR (2014) An efficient two-parametric family with memory for nonlinear equations. Numer Algor. doi: 10.1007/s11075-014-9846-8 es_ES
dc.relation.references Geum YH, Kim YI (2011) A uniparametric family of three-step eighth-order multipoint iterative methods for simple roots. Appl Math Lett 24:929–935 es_ES
dc.relation.references Heydari M, Hosseini SH, Loghmani GB (2011) On two new families of iterative methods for solving nonlinear equations with optimal order. Appl Anal Discret Math 5:93–109 es_ES
dc.relation.references Jay IO (2001) A note on Q-order of convergence. BIT Numer Math 41:422–429 es_ES
dc.relation.references Khattri SK, Steihaug T (2013) Algorithm for forming derivative-free optimal methods. Numer Algor. doi: 10.1007/s11075-013-9715-x es_ES
dc.relation.references Kou J, Wang X, Li Y (2010) Some eighth-order root-finding three-step methods. Commun Nonlinear Sci Numer Simul 15:536–544 es_ES
dc.relation.references Kung HT, Traub JF (1974) Optimal order of one-point and multipoint iteration. J Assoc Comput Math 21:634–651 es_ES
dc.relation.references Liu X, Wang X (2012) A convergence improvement factor and higher-order methods for solving nonlinear equations. Appl Math Comput 218:7871–7875 es_ES
dc.relation.references Lotfi T, Tavakoli E (2014) On a new efficient Steffensen-like iterative class by applying a suitable self-accelerator parameter. Sci World J. Article ID 769758, 9 pp. doi: 10.1155/2014/769758 es_ES
dc.relation.references Lotfi T, Soleymani F, Shateyi S, Assari P, Khaksar Haghani F (2014a) New mono- and biaccelerator iterative methods with memory for nonlinear equations. Abstr Appl Anal. Article ID 705674, 8 pp. doi: 10.1155/2014/705674 es_ES
dc.relation.references Lotfi T, Soleymani F, Noori Z, Kiliman A, Khaksar Haghani F (2014b) Efficient iterative methods with and without memory possessing high efficiency indices. Discret Dyn Nat Soc. Article ID 912796, 9 pp. doi: 10.1155/2014/912796 es_ES
dc.relation.references Magreñan AA (2014) A new tool to study real dynamics: the convergence plane. arXiv:1310.3986 [math.NA] es_ES
dc.relation.references Ortega JM, Rheimbolt WC (1970) Iterative solution of nonlinear equations in several variables. Academic Press, New York es_ES
dc.relation.references Ostrowski AM (1966) Solutions of equations and systems of equations. Academic Press, New York-London es_ES
dc.relation.references Petković MS, Ilić S, Džunić J (2010) Derivative free two-point methods with and without memory for solving nonlinear equations. Appl Math Comput 217(5):1887–1895 es_ES
dc.relation.references Petković MS, Neta B, Petković LD, Džunić J (2014) Multipoint methods for solving nonlinear equations: a survey. Appl Math Comput 226(2):635–660 es_ES
dc.relation.references Ren H, Wu Q, Bi W (2009) A class of two-step Steffensen type methods with fourth-order convergence. Appl Math Comput 209:206–210 es_ES
dc.relation.references Soleymani F, Sharifi M, Mousavi S (2012) An improvement of Ostrowski’s and King’s techniques with optimal convergence order eight. J Optim Theory Appl 153:225–236 es_ES
dc.relation.references Soleimani F, Soleymani F, Shateyi S (2013) Some iterative methods free from derivatives and their basins of attraction for nonlinear equations. Discret Dyn Nat Soc. Article ID 301718, 10 pp es_ES
dc.relation.references Thukral R (2011) Eighth-order iterative methods without derivatives for solving nonlinear equation. ISRN Appl Math. Article ID 693787, 12 pp es_ES
dc.relation.references Traub JF (1964) Iterative methods for the solution of equations. Prentice Hall, New York es_ES
dc.relation.references Zheng Q, Li J, Huang F (2011) An optimal Steffensen-type family for solving nonlinear equations. Appl Math Comput 217:9592–9597 es_ES


This item appears in the following Collection(s)

Show simple item record