Mostrar el registro sencillo del ítem
dc.contributor.author | Rodríguez-Hernández, Miguel A. | es_ES |
dc.contributor.author | San Emeterio, Jose L. | es_ES |
dc.date.accessioned | 2017-07-10T11:41:09Z | |
dc.date.available | 2017-07-10T11:41:09Z | |
dc.date.issued | 2016-03 | |
dc.identifier.issn | 1863-1703 | |
dc.identifier.uri | http://hdl.handle.net/10251/84849 | |
dc.description.abstract | Cycle spinning (CS) and a'trous algorithms are different implementations of the undecimated wavelet transform (UWT). Both algorithms can be used for UWT and even though the resulting wavelet coefficients are different, they keep a correspondence. This paper describes an analysis of the CS algorithm performed in the z-transform domain, showing the similarities and differences with the a'trous implementation. CS generates more wavelet coefficients than a'trous, but the number of significative and different coefficients is the same in both cases because of the occurrence of a periodic repetition in CS coefficients. Mathematical expressions for the relationship between CS and a'trous coefficients and for CS coefficient periodicities are provided in the z-transform domain. In some wavelet denoising applications, periodicities (present in the coefficients of the CS procedure) can also be found in the performance measure of the processed signals. In particular, in ultrasonic CS denoising applications, periodicities have been appreciated in the signal-to-noise ratio (SNR) of the ultrasonic denoised signals. These periodicities can be used to optimize the number of CS coefficients for an efficient implementation. Two examples showing the periodicities in the SNR are included. A selection of several reduced sets of CS wavelet coefficients has been utilized in the examples, and the SNRs resulting after denoising are analyzed. | es_ES |
dc.description.sponsorship | This work was partially supported by Spanish MCI Project DPI2011-22438 and MEC Project TIN2013-47272-C2-1-R. The translation of this paper was funded by the Universitat Politecnica de Valencia, Spain. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Signal, Image and Video Processing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Wavelets | es_ES |
dc.subject | Cycle spinning | es_ES |
dc.subject | Periodicities | es_ES |
dc.subject | Signal denoising | es_ES |
dc.subject | Ultrasonics | es_ES |
dc.subject | Z-transform | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Noise reduction using wavelet cycle spinning: analysis of useful periodicities in the z-transform domain | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11760-015-0762-8 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2011-22438/ES/NUEVAS TECNICAS ULTRASONICAS PARA ESTIMACION NO-INVASIVA. APLICACIONES INNOVADORAS EN TEJIDOS, VEGETALES, MATERIALES MICRO%2FNANOESTRUCTURADOS Y ELEMENTOS ESTRATEGICOS./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2013-47272-C2-1-R/ES/PLATAFORMA DE SERVICIOS PARA CIUDADES INTELIGENTES CON REDES M2M DENSAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Rodríguez-Hernández, MA.; San Emeterio, JL. (2016). Noise reduction using wavelet cycle spinning: analysis of useful periodicities in the z-transform domain. Signal, Image and Video Processing. 10(3):519-526. https://doi.org/10.1007/s11760-015-0762-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s11760-015-0762-8 | es_ES |
dc.description.upvformatpinicio | 519 | es_ES |
dc.description.upvformatpfin | 526 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 301468 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992) | es_ES |
dc.description.references | Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, New York (1999) | es_ES |
dc.description.references | Kovacevic, J., Goyal, V.K., Vetterli, M.: Signal Processing Fourier and Wavelet Representations. http://www.fourierandwavelets.org/SPFWR_a3.1_2012.pdf (2012) | es_ES |
dc.description.references | Burrus, C.S., Gopinath, R.A., Guo, H.: Introduction to Wavelets and Wavelet Transforms. Prentice-Hall, New Jersey (1998) | es_ES |
dc.description.references | Kamilov, U., Bostan, E., Unser, M.: Wavelet shrinkage with consistent cycle spinning generalizes total variation denoising. IEEE Signal Process. Lett. 19(4), 187–190 (2012) | es_ES |
dc.description.references | Kumar, B.K.S.: Image denoising based on non-local means filter and its method noise thresholding. Signal Image Video Process. 7, 1211–1227 (2013) | es_ES |
dc.description.references | Rezazadeh, S., Coulombe, S.: A novel discrete wavelet transform framework for full reference image quality assessment. Signal Image Video Process. 7, 559–573 (2013) | es_ES |
dc.description.references | Atto, A.M., Pastor, D., Mercier, G.: Wavelet shrinkage: unification of basic thresholding functions and thresholds. Signal Image Video Process. 5, 11–28 (2011) | es_ES |
dc.description.references | Yektaii, M., Ahmad, M.O., Bhattacharya, P.: A method for preserving the classifiability of digital images after performing a wavelet-based compression. Signal Image Video Process. 8, 169–180 (2014) | es_ES |
dc.description.references | Kanumuri, T., Dewal, M.L., Anand, R.S.: Progressive medical image coding using binary wavelet transforms. Signal Image Video Process. 8, 883–899 (2014) | es_ES |
dc.description.references | Kubinyi, M., Kreibich, O., Neuzil, J., Smid, R.: EMAT noise suppression using information fusion in stationary wavelet packets. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1027–1036 (2011) | es_ES |
dc.description.references | Abbate, A., Koay, J., Frankel, J., Schroeder, S.C., Das, P.: Signal detection and noise suppression using a wavelet transform signal processor: application to ultrasonic flaw detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 14–26 (1997) | es_ES |
dc.description.references | Pardo, E., San Emeterio, J.L., Rodriguez, M.A., Ramos, A.: Noise reduction in ultrasonic NDT using undecimated wavelet transforms. Ultrasonics 44, e1063–e1067 (2006) | es_ES |
dc.description.references | Pardo, E., Emeterio, J.L., Rodriguez, M.A., Ramos, A.: Shift invariant wavelet denoising of ultrasonic traces. Acta Acust. United Acust. 94, 685–693 (2008) | es_ES |
dc.description.references | Shensa, M.J.: The discrete wavelet transform: wedding the a trous and Mallat algorithms. IEEE Trans. Signal Process. 40, 2464–2482 (1992) | es_ES |
dc.description.references | Coifman, R., Donoho, D.: Translation invariant de-noising. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics, Lecture Notes in Statistics, pp. 125–150. Springer, Berlin (1995) | es_ES |
dc.description.references | Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 2, 674–693 (1989) | es_ES |
dc.description.references | Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms. Commun. Pure Appl. Math. 44, 141–183 (1991) | es_ES |
dc.description.references | Beylkin, G.: On the representation of operators in bases of compactly supported wavelets. SIAM J. Numer. Anal. 6(6), 1716–1740 (1992) | es_ES |
dc.description.references | Vaidyanathan, P.P.: Multirate Systems and Filter Banks. Prentice Hall, Englewood Cliffs (1992) | es_ES |
dc.description.references | Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994) | es_ES |
dc.description.references | Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90, 1200–1224 (1995) | es_ES |
dc.description.references | Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D.: Wavelet shrinkage: Asymptotia? J. R. Stat. Soc. Ser. B 57, 301–369 (1995) | es_ES |
dc.description.references | Karpur, P., Shankar, P.M., Rose, J.L., Newhouse, V.L.: Split spectrum processing: optimizing the processing parameters using minimization. Ultrasonics 25, 204–208 (1997) | es_ES |
dc.description.references | Lazaro, J.C., San Emeterio, J.L., Ramos, A., Fernandez, J.L.: Influence of thresholding procedures in ultrasonic grain noise reduction using wavelets. Ultrasonics 40, 263–267 (2002) | es_ES |
dc.description.references | Donoho, D.L.: De-noising by soft thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1995) | es_ES |
dc.description.references | Johnstone, I.M., Silverman, B.W.: Wavelet threshold estimators for data with correlated noise. J. R. Stat. Soc. 59, 319–351 (1997) | es_ES |