- -

Noise reduction using wavelet cycle spinning: analysis of useful periodicities in the z-transform domain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Noise reduction using wavelet cycle spinning: analysis of useful periodicities in the z-transform domain

Mostrar el registro completo del ítem

Rodríguez-Hernández, MA.; San Emeterio, JL. (2016). Noise reduction using wavelet cycle spinning: analysis of useful periodicities in the z-transform domain. Signal, Image and Video Processing. 10(3):519-526. https://doi.org/10.1007/s11760-015-0762-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/84849

Ficheros en el ítem

Metadatos del ítem

Título: Noise reduction using wavelet cycle spinning: analysis of useful periodicities in the z-transform domain
Autor: Rodríguez-Hernández, Miguel A. San Emeterio, Jose L.
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Fecha difusión:
Resumen:
Cycle spinning (CS) and a'trous algorithms are different implementations of the undecimated wavelet transform (UWT). Both algorithms can be used for UWT and even though the resulting wavelet coefficients are different, ...[+]
Palabras clave: Wavelets , Cycle spinning , Periodicities , Signal denoising , Ultrasonics , Z-transform
Derechos de uso: Reserva de todos los derechos
Fuente:
Signal, Image and Video Processing. (issn: 1863-1703 )
DOI: 10.1007/s11760-015-0762-8
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/s11760-015-0762-8
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2011-22438/ES/NUEVAS TECNICAS ULTRASONICAS PARA ESTIMACION NO-INVASIVA. APLICACIONES INNOVADORAS EN TEJIDOS, VEGETALES, MATERIALES MICRO%2FNANOESTRUCTURADOS Y ELEMENTOS ESTRATEGICOS./
info:eu-repo/grantAgreement/MINECO//TIN2013-47272-C2-1-R/ES/PLATAFORMA DE SERVICIOS PARA CIUDADES INTELIGENTES CON REDES M2M DENSAS/
Agradecimientos:
This work was partially supported by Spanish MCI Project DPI2011-22438 and MEC Project TIN2013-47272-C2-1-R. The translation of this paper was funded by the Universitat Politecnica de Valencia, Spain.
Tipo: Artículo

References

Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, New York (1999)

Kovacevic, J., Goyal, V.K., Vetterli, M.: Signal Processing Fourier and Wavelet Representations. http://www.fourierandwavelets.org/SPFWR_a3.1_2012.pdf (2012) [+]
Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, New York (1999)

Kovacevic, J., Goyal, V.K., Vetterli, M.: Signal Processing Fourier and Wavelet Representations. http://www.fourierandwavelets.org/SPFWR_a3.1_2012.pdf (2012)

Burrus, C.S., Gopinath, R.A., Guo, H.: Introduction to Wavelets and Wavelet Transforms. Prentice-Hall, New Jersey (1998)

Kamilov, U., Bostan, E., Unser, M.: Wavelet shrinkage with consistent cycle spinning generalizes total variation denoising. IEEE Signal Process. Lett. 19(4), 187–190 (2012)

Kumar, B.K.S.: Image denoising based on non-local means filter and its method noise thresholding. Signal Image Video Process. 7, 1211–1227 (2013)

Rezazadeh, S., Coulombe, S.: A novel discrete wavelet transform framework for full reference image quality assessment. Signal Image Video Process. 7, 559–573 (2013)

Atto, A.M., Pastor, D., Mercier, G.: Wavelet shrinkage: unification of basic thresholding functions and thresholds. Signal Image Video Process. 5, 11–28 (2011)

Yektaii, M., Ahmad, M.O., Bhattacharya, P.: A method for preserving the classifiability of digital images after performing a wavelet-based compression. Signal Image Video Process. 8, 169–180 (2014)

Kanumuri, T., Dewal, M.L., Anand, R.S.: Progressive medical image coding using binary wavelet transforms. Signal Image Video Process. 8, 883–899 (2014)

Kubinyi, M., Kreibich, O., Neuzil, J., Smid, R.: EMAT noise suppression using information fusion in stationary wavelet packets. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1027–1036 (2011)

Abbate, A., Koay, J., Frankel, J., Schroeder, S.C., Das, P.: Signal detection and noise suppression using a wavelet transform signal processor: application to ultrasonic flaw detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 14–26 (1997)

Pardo, E., San Emeterio, J.L., Rodriguez, M.A., Ramos, A.: Noise reduction in ultrasonic NDT using undecimated wavelet transforms. Ultrasonics 44, e1063–e1067 (2006)

Pardo, E., Emeterio, J.L., Rodriguez, M.A., Ramos, A.: Shift invariant wavelet denoising of ultrasonic traces. Acta Acust. United Acust. 94, 685–693 (2008)

Shensa, M.J.: The discrete wavelet transform: wedding the a trous and Mallat algorithms. IEEE Trans. Signal Process. 40, 2464–2482 (1992)

Coifman, R., Donoho, D.: Translation invariant de-noising. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics, Lecture Notes in Statistics, pp. 125–150. Springer, Berlin (1995)

Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 2, 674–693 (1989)

Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms. Commun. Pure Appl. Math. 44, 141–183 (1991)

Beylkin, G.: On the representation of operators in bases of compactly supported wavelets. SIAM J. Numer. Anal. 6(6), 1716–1740 (1992)

Vaidyanathan, P.P.: Multirate Systems and Filter Banks. Prentice Hall, Englewood Cliffs (1992)

Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994)

Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90, 1200–1224 (1995)

Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D.: Wavelet shrinkage: Asymptotia? J. R. Stat. Soc. Ser. B 57, 301–369 (1995)

Karpur, P., Shankar, P.M., Rose, J.L., Newhouse, V.L.: Split spectrum processing: optimizing the processing parameters using minimization. Ultrasonics 25, 204–208 (1997)

Lazaro, J.C., San Emeterio, J.L., Ramos, A., Fernandez, J.L.: Influence of thresholding procedures in ultrasonic grain noise reduction using wavelets. Ultrasonics 40, 263–267 (2002)

Donoho, D.L.: De-noising by soft thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1995)

Johnstone, I.M., Silverman, B.W.: Wavelet threshold estimators for data with correlated noise. J. R. Stat. Soc. 59, 319–351 (1997)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem