- -

Upgrading brewer's spent grain as functional filler in polypropylene matrix

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Upgrading brewer's spent grain as functional filler in polypropylene matrix

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Revert, A. es_ES
dc.contributor.author Reig Pérez, Miguel Jorge es_ES
dc.contributor.author Segui Llinares, Vicente Jesús es_ES
dc.contributor.author Boronat Vitoria, Teodomiro es_ES
dc.contributor.author Fombuena Borrás, Vicent es_ES
dc.contributor.author Balart Gimeno, Rafael Antonio es_ES
dc.date.accessioned 2017-07-11T07:06:10Z
dc.date.available 2017-07-11T07:06:10Z
dc.date.issued 2017-01
dc.identifier.issn 0272-8397
dc.identifier.uri http://hdl.handle.net/10251/84890
dc.description.abstract Brewer's spent grain (BSG) is a by-product of the brewing industry that contributes to a large volume of wastes. The lignocellulosic nature of this waste, together with presence of functional components such as antioxidants, represents an attractive for the composite's industry. In this work, BSG has been used as functional filler for polypropylene matrix to give an additional use to this industrial waste. Addition of BSG filler improves the overall environmental efficiency of the polypropylene matrix thus leading to high environmentally friendly materials. BSG can be loaded in the 10 40 wt% range with easy manufacturing, balanced mechanical properties, and additionally, excellent antioxidant properties are achieved with increasing BSG loading due to natural antioxidants that have not been removed during the brewing process. In particular, the onset of the thermo-oxidative degradation of polypropylene is improved by 15 20°C for different compositions. Due to the lignocellulosic nature of BSG, water uptake is a clear drawback of PP BSG composites but formulations containing 10-30 wt% BSG hold the water uptake at very low values. POLYM. COMPOS., 38:40 47, 2017. © 2015 Society of Plastics Engineers es_ES
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Polymer Composites es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Wood-plastic composite es_ES
dc.subject Density polyethylene composites es_ES
dc.subject Mechanical-properties es_ES
dc.subject Poly(vinyl chloride) es_ES
dc.subject Phenolic extracts es_ES
dc.subject Decking products es_ES
dc.subject Natural fibers es_ES
dc.subject Performance es_ES
dc.subject Waste es_ES
dc.subject Compatibilizer es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Upgrading brewer's spent grain as functional filler in polypropylene matrix es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/pc.23558
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Revert, A.; Reig Pérez, MJ.; Segui Llinares, VJ.; Boronat Vitoria, T.; Fombuena Borrás, V.; Balart Gimeno, RA. (2017). Upgrading brewer's spent grain as functional filler in polypropylene matrix. Polymer Composites. 38(1):40-47. doi:10.1002/pc.23558 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/pc.23558 es_ES
dc.description.upvformatpinicio 40 es_ES
dc.description.upvformatpfin 47 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 38 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 323938 es_ES
dc.identifier.eissn 1548-0569
dc.description.references Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries! Bioresource Technology, 99(11), 4661-4667. doi:10.1016/j.biortech.2007.09.043 es_ES
dc.description.references Ayrilmis, N., Jarusombuti, S., Fueangvivat, V., Bauchongkol, P., & White, R. H. (2011). Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fibers and Polymers, 12(7), 919-926. doi:10.1007/s12221-011-0919-1 es_ES
dc.description.references Hemmati, F., & Garmabi, H. (2012). A study on fire retardancy and durability performance of bagasse fiber/polypropylene composite for outdoor applications. Journal of Thermoplastic Composite Materials, 26(8), 1041-1056. doi:10.1177/0892705711433350 es_ES
dc.description.references Li, L., Gong, M., & Li, D. (2013). Evaluation of the kinetic friction performance of modified wood decking products. Construction and Building Materials, 40, 863-868. doi:10.1016/j.conbuildmat.2012.11.033 es_ES
dc.description.references Seefeldt, H., & Braun, U. (2011). Burning behavior of wood-plastic composite decking boards in end-use conditions: the effects of geometry, material composition, and moisture. Journal of Fire Sciences, 30(1), 41-54. doi:10.1177/0734904111423488 es_ES
dc.description.references Xanthos, M., Dey, S. K., Mitra, S., Yilmazer, U., & Feng, C. (2002). Prototypes for building applications based on thermoplastic composites containing mixed waste plastics. Polymer Composites, 23(2), 153-163. doi:10.1002/pc.10421 es_ES
dc.description.references Bledzki, A. K., Letman-Sakiewicz, M., & Murr, M. (2010). Influence of static and cyclic climate condition on bending properties of wood plastic composites (WPC). Express Polymer Letters, 4(6), 364-372. doi:10.3144/expresspolymlett.2010.46 es_ES
dc.description.references Li, L., Gong, M., & Li, D. (2012). Evaluation of the slip resistance of modified wood decking products. Construction and Building Materials, 35, 440-443. doi:10.1016/j.conbuildmat.2012.04.015 es_ES
dc.description.references Kazemi, Y., Cloutier, A., & Rodrigue, D. (2013). Mechanical and morphological properties of wood plastic composites based on municipal plastic waste. Polymer Composites, 34(4), 487-493. doi:10.1002/pc.22442 es_ES
dc.description.references Khalil, H. A., Tehrani, M., Davoudpour, Y., Bhat, A., Jawaid, M., & Hassan, A. (2012). Natural fiber reinforced poly(vinyl chloride) composites: A review. Journal of Reinforced Plastics and Composites, 32(5), 330-356. doi:10.1177/0731684412458553 es_ES
dc.description.references Kim, B.-J., Yao, F., Han, G., & Wu, Q. (2011). Performance of bamboo plastic composites with hybrid bamboo and precipitated calcium carbonate fillers. Polymer Composites, 33(1), 68-78. doi:10.1002/pc.21244 es_ES
dc.description.references Kumar, V., Tyagi, L., & Sinha, S. (2011). Wood flour–reinforced plastic composites: a review. Reviews in Chemical Engineering, 27(5-6). doi:10.1515/revce.2011.006 es_ES
dc.description.references Kazemi Najafi, S. (2013). Use of recycled plastics in wood plastic composites – A review. Waste Management, 33(9), 1898-1905. doi:10.1016/j.wasman.2013.05.017 es_ES
dc.description.references Ozen, E., Kiziltas, A., Kiziltas, E. E., & Gardner, D. J. (2013). Natural fiber blend-nylon 6 composites. Polymer Composites, 34(4), 544-553. doi:10.1002/pc.22463 es_ES
dc.description.references Petchwattana, N., & Covavisaruch, S. (2013). Effects of rice hull particle size and content on the mechanical properties and visual appearance of wood plastic composites prepared from poly(vinyl chloride). Journal of Bionic Engineering, 10(1), 110-117. doi:10.1016/s1672-6529(13)60205-x es_ES
dc.description.references Sailaja, R. R. N., & Deepthi, M. V. (2010). Mechanical and thermal properties of compatibilized composites of LDPE and esterified unbleached wood pulp. Polymer Composites, 32(2), 199-209. doi:10.1002/pc.21033 es_ES
dc.description.references Shahi, P., Behravesh, A. H., Daryabari, S. Y., & Lotfi, M. (2012). Experimental investigation on reprocessing of extruded wood flour/HDPE composites. Polymer Composites, 33(5), 753-763. doi:10.1002/pc.22201 es_ES
dc.description.references De Carvalho Neto, A. G. V., Ganzerli, T. A., Cardozo, A. L., Fávaro, S. L., Pereira, A. G. B., Girotto, E. M., & Radovanovic, E. (2013). Development of composites based on recycled polyethylene/sugarcane bagasse fibers. Polymer Composites, 35(4), 768-774. doi:10.1002/pc.22720 es_ES
dc.description.references Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review. Polymer Engineering & Science, 49(7), 1253-1272. doi:10.1002/pen.21328 es_ES
dc.description.references Karimi, A. N., Tajvidi, M., & Pourabbasi, S. (2007). Effect of compatibilizer on the natural durability of wood flour/high density polyethylene composites against rainbow fungus (Coriolus versicolor). Polymer Composites, 28(3), 273-277. doi:10.1002/pc.20305 es_ES
dc.description.references Luo, S., Cao, J., & Peng, Y. (2013). Properties of glycerin-thermally modified wood flour/polypropylene composites. Polymer Composites, 35(2), 201-207. doi:10.1002/pc.22651 es_ES
dc.description.references Matuana, L. M., Woodhams, R. T., Balatinecz, J. J., & Park, C. B. (1998). Influence of interfacial interactions on the properties of PVC/cellulosic fiber composites. Polymer Composites, 19(4), 446-455. doi:10.1002/pc.10119 es_ES
dc.description.references Sobczak, L., Brüggemann, O., & Putz, R. F. (2012). Polyolefin composites with natural fibers and wood-modification of the fiber/filler-matrix interaction. Journal of Applied Polymer Science, 127(1), 1-17. doi:10.1002/app.36935 es_ES
dc.description.references Toupe, J. L., Trokourey, A., & Rodrigue, D. (2013). Simultaneous optimization of the mechanical properties of postconsumer natural fiber/plastic composites: Phase compatibilization and quality/cost ratio. Polymer Composites, 35(4), 730-746. doi:10.1002/pc.22716 es_ES
dc.description.references Xie, Y., Hill, C. A. S., Xiao, Z., Militz, H., & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41(7), 806-819. doi:10.1016/j.compositesa.2010.03.005 es_ES
dc.description.references Xu, Y., Lee, S.-Y., & Wu, Q. (2011). Creep analysis of bamboo high-density polyethylene composites: Effect of interfacial treatment and fiber loading level. Polymer Composites, 32(5), 692-699. doi:10.1002/pc.21088 es_ES
dc.description.references Zhu, L., Cao, J., Wang, Y., Liu, R., & Zhao, G. (2013). Effect of MAPP on interfacial compatibility of wood flour/polypropylene composite evaluated with dielectric approach. Polymer Composites, 35(3), 489-494. doi:10.1002/pc.22686 es_ES
dc.description.references Mussatto, S. I. (2014). Brewer’s spent grain: a valuable feedstock for industrial applications. Journal of the Science of Food and Agriculture, 94(7), 1264-1275. doi:10.1002/jsfa.6486 es_ES
dc.description.references Mussatto, S. I., Dragone, G., & Roberto, I. C. (2006). Brewers’ spent grain: generation, characteristics and potential applications. Journal of Cereal Science, 43(1), 1-14. doi:10.1016/j.jcs.2005.06.001 es_ES
dc.description.references Mussatto, S. I., Fernandes, M., Rocha, G. J. M., Órfão, J. J. M., Teixeira, J. A., & Roberto, I. C. (2010). Production, characterization and application of activated carbon from brewer’s spent grain lignin. Bioresource Technology, 101(7), 2450-2457. doi:10.1016/j.biortech.2009.11.025 es_ES
dc.description.references Mussatto, S. I., Moncada, J., Roberto, I. C., & Cardona, C. A. (2013). Techno-economic analysis for brewer’s spent grains use on a biorefinery concept: The Brazilian case. Bioresource Technology, 148, 302-310. doi:10.1016/j.biortech.2013.08.046 es_ES
dc.description.references Pejin, J., Radosavljevic, M., Grujic, O., Mojovic, L., Kocic-Tanackov, S., Nikolic, S., & Djukic-Vukovic, A. (2013). Possible application of brewer’s spent grain in biotechnology. Hemijska industrija, 67(2), 277-291. doi:10.2298/hemind120410065p es_ES
dc.description.references Vieira, E., Rocha, M. A. M., Coelho, E., Pinho, O., Saraiva, J. A., Ferreira, I. M. P. L. V. O., & Coimbra, M. A. (2014). Valuation of brewer’s spent grain using a fully recyclable integrated process for extraction of proteins and arabinoxylans. Industrial Crops and Products, 52, 136-143. doi:10.1016/j.indcrop.2013.10.012 es_ES
dc.description.references Araujo, J. R., Adamo, C. B., Costa e Silva, M. V., & De Paoli, M.-A. (2013). Antistatic-reinforced biocomposites of polyamide-6 and polyaniline-coated curauá fibers prepared on a pilot plant scale. Polymer Composites, 34(7), 1081-1090. doi:10.1002/pc.22516 es_ES
dc.description.references Gu, R., Sain, M., & Kokta, B. V. (2014). Evaluation of wood composite additives in the mechanical property changes of PE blends. Polymer Composites, 36(2), 287-293. doi:10.1002/pc.22942 es_ES
dc.description.references Pérez-Fonseca, A. A., Robledo-Ortíz, J. R., Moscoso-Sánchez, F. J., Rodrigue, D., & González-Núñez, R. (2013). Injection molded self-hybrid composites based on polypropylene and natural fibers. Polymer Composites, 35(9), 1798-1806. doi:10.1002/pc.22834 es_ES
dc.description.references Naghmouchi, I., Espinach, F. X., Mutjé, P., & Boufi, S. (2015). Polypropylene composites based on lignocellulosic fillers: How the filler morphology affects the composite properties. Materials & Design (1980-2015), 65, 454-461. doi:10.1016/j.matdes.2014.09.047 es_ES
dc.description.references Poletto, M., Zattera, A. J., & Santana, R. M. C. (2014). Effect of natural oils on the thermal stability and degradation kinetics of recycled polypropylene wood flour composites. Polymer Composites, 35(10), 1935-1942. doi:10.1002/pc.22852 es_ES
dc.description.references Wang, W., Yang, X., Bu, F., & Sui, S. (2014). Properties of rice husk-HDPE composites after exposure to thermo-treatment. Polymer Composites, 35(11), 2180-2186. doi:10.1002/pc.22882 es_ES
dc.description.references Kakroodi, A. R., & Rodrigue, D. (2014). Impact modification of polypropylene-based composites using surface-coated waste rubber crumbs. Polymer Composites, 35(11), 2280-2289. doi:10.1002/pc.22893 es_ES
dc.description.references Connolly, A., Piggott, C. O., & FitzGerald, R. J. (2013). Characterisation of protein-rich isolates and antioxidative phenolic extracts from pale and black brewers’ spent grain. International Journal of Food Science & Technology, 48(8), 1670-1681. doi:10.1111/ijfs.12137 es_ES
dc.description.references McCarthy, A. L., O’Callaghan, Y. C., Connolly, A., Piggott, C. O., FitzGerald, R. J., & O’Brien, N. M. (2013). Phenolic-enriched fractions from brewers’ spent grain possess cellular antioxidant and immunomodulatory effects in cell culture model systems. Journal of the Science of Food and Agriculture, 94(7), 1373-1379. doi:10.1002/jsfa.6421 es_ES
dc.description.references Moreira, M. M., Morais, S., Barros, A. A., Delerue-Matos, C., & Guido, L. F. (2012). A novel application of microwave-assisted extraction of polyphenols from brewer’s spent grain with HPLC-DAD-MS analysis. Analytical and Bioanalytical Chemistry, 403(4), 1019-1029. doi:10.1007/s00216-011-5703-y es_ES
dc.description.references Moreira, M. M., Morais, S., Carvalho, D. O., Barros, A. A., Delerue-Matos, C., & Guido, L. F. (2013). Brewer’s spent grain from different types of malt: Evaluation of the antioxidant activity and identification of the major phenolic compounds. Food Research International, 54(1), 382-388. doi:10.1016/j.foodres.2013.07.023 es_ES
dc.description.references McCarthy, A. L., O’Callaghan, Y. C., Neugart, S., Piggott, C. O., Connolly, A., Jansen, M. A. K., … O’Brien, N. M. (2013). The hydroxycinnamic acid content of barley and brewers’ spent grain (BSG) and the potential to incorporate phenolic extracts of BSG as antioxidants into fruit beverages. Food Chemistry, 141(3), 2567-2574. doi:10.1016/j.foodchem.2013.05.048 es_ES
dc.description.references Tajvidi, M., & Takemura, A. (2009). Effect of fiber content and type, compatibilizer, and heating rate on thermogravimetric properties of natural fiber high density polyethylene composites. Polymer Composites, 30(9), 1226-1233. doi:10.1002/pc.20682 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem