Mostrar el registro sencillo del ítem
dc.contributor.author | Revert, A. | es_ES |
dc.contributor.author | Reig Pérez, Miguel Jorge | es_ES |
dc.contributor.author | Segui Llinares, Vicente Jesús | es_ES |
dc.contributor.author | Boronat Vitoria, Teodomiro | es_ES |
dc.contributor.author | Fombuena Borrás, Vicent | es_ES |
dc.contributor.author | Balart Gimeno, Rafael Antonio | es_ES |
dc.date.accessioned | 2017-07-11T07:06:10Z | |
dc.date.available | 2017-07-11T07:06:10Z | |
dc.date.issued | 2017-01 | |
dc.identifier.issn | 0272-8397 | |
dc.identifier.uri | http://hdl.handle.net/10251/84890 | |
dc.description.abstract | Brewer's spent grain (BSG) is a by-product of the brewing industry that contributes to a large volume of wastes. The lignocellulosic nature of this waste, together with presence of functional components such as antioxidants, represents an attractive for the composite's industry. In this work, BSG has been used as functional filler for polypropylene matrix to give an additional use to this industrial waste. Addition of BSG filler improves the overall environmental efficiency of the polypropylene matrix thus leading to high environmentally friendly materials. BSG can be loaded in the 10 40 wt% range with easy manufacturing, balanced mechanical properties, and additionally, excellent antioxidant properties are achieved with increasing BSG loading due to natural antioxidants that have not been removed during the brewing process. In particular, the onset of the thermo-oxidative degradation of polypropylene is improved by 15 20°C for different compositions. Due to the lignocellulosic nature of BSG, water uptake is a clear drawback of PP BSG composites but formulations containing 10-30 wt% BSG hold the water uptake at very low values. POLYM. COMPOS., 38:40 47, 2017. © 2015 Society of Plastics Engineers | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Polymer Composites | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Wood-plastic composite | es_ES |
dc.subject | Density polyethylene composites | es_ES |
dc.subject | Mechanical-properties | es_ES |
dc.subject | Poly(vinyl chloride) | es_ES |
dc.subject | Phenolic extracts | es_ES |
dc.subject | Decking products | es_ES |
dc.subject | Natural fibers | es_ES |
dc.subject | Performance | es_ES |
dc.subject | Waste | es_ES |
dc.subject | Compatibilizer | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Upgrading brewer's spent grain as functional filler in polypropylene matrix | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/pc.23558 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Revert, A.; Reig Pérez, MJ.; Segui Llinares, VJ.; Boronat Vitoria, T.; Fombuena Borrás, V.; Balart Gimeno, RA. (2017). Upgrading brewer's spent grain as functional filler in polypropylene matrix. Polymer Composites. 38(1):40-47. doi:10.1002/pc.23558 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/pc.23558 | es_ES |
dc.description.upvformatpinicio | 40 | es_ES |
dc.description.upvformatpfin | 47 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 38 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 323938 | es_ES |
dc.identifier.eissn | 1548-0569 | |
dc.description.references | Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries! Bioresource Technology, 99(11), 4661-4667. doi:10.1016/j.biortech.2007.09.043 | es_ES |
dc.description.references | Ayrilmis, N., Jarusombuti, S., Fueangvivat, V., Bauchongkol, P., & White, R. H. (2011). Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fibers and Polymers, 12(7), 919-926. doi:10.1007/s12221-011-0919-1 | es_ES |
dc.description.references | Hemmati, F., & Garmabi, H. (2012). A study on fire retardancy and durability performance of bagasse fiber/polypropylene composite for outdoor applications. Journal of Thermoplastic Composite Materials, 26(8), 1041-1056. doi:10.1177/0892705711433350 | es_ES |
dc.description.references | Li, L., Gong, M., & Li, D. (2013). Evaluation of the kinetic friction performance of modified wood decking products. Construction and Building Materials, 40, 863-868. doi:10.1016/j.conbuildmat.2012.11.033 | es_ES |
dc.description.references | Seefeldt, H., & Braun, U. (2011). Burning behavior of wood-plastic composite decking boards in end-use conditions: the effects of geometry, material composition, and moisture. Journal of Fire Sciences, 30(1), 41-54. doi:10.1177/0734904111423488 | es_ES |
dc.description.references | Xanthos, M., Dey, S. K., Mitra, S., Yilmazer, U., & Feng, C. (2002). Prototypes for building applications based on thermoplastic composites containing mixed waste plastics. Polymer Composites, 23(2), 153-163. doi:10.1002/pc.10421 | es_ES |
dc.description.references | Bledzki, A. K., Letman-Sakiewicz, M., & Murr, M. (2010). Influence of static and cyclic climate condition on bending properties of wood plastic composites (WPC). Express Polymer Letters, 4(6), 364-372. doi:10.3144/expresspolymlett.2010.46 | es_ES |
dc.description.references | Li, L., Gong, M., & Li, D. (2012). Evaluation of the slip resistance of modified wood decking products. Construction and Building Materials, 35, 440-443. doi:10.1016/j.conbuildmat.2012.04.015 | es_ES |
dc.description.references | Kazemi, Y., Cloutier, A., & Rodrigue, D. (2013). Mechanical and morphological properties of wood plastic composites based on municipal plastic waste. Polymer Composites, 34(4), 487-493. doi:10.1002/pc.22442 | es_ES |
dc.description.references | Khalil, H. A., Tehrani, M., Davoudpour, Y., Bhat, A., Jawaid, M., & Hassan, A. (2012). Natural fiber reinforced poly(vinyl chloride) composites: A review. Journal of Reinforced Plastics and Composites, 32(5), 330-356. doi:10.1177/0731684412458553 | es_ES |
dc.description.references | Kim, B.-J., Yao, F., Han, G., & Wu, Q. (2011). Performance of bamboo plastic composites with hybrid bamboo and precipitated calcium carbonate fillers. Polymer Composites, 33(1), 68-78. doi:10.1002/pc.21244 | es_ES |
dc.description.references | Kumar, V., Tyagi, L., & Sinha, S. (2011). Wood flour–reinforced plastic composites: a review. Reviews in Chemical Engineering, 27(5-6). doi:10.1515/revce.2011.006 | es_ES |
dc.description.references | Kazemi Najafi, S. (2013). Use of recycled plastics in wood plastic composites – A review. Waste Management, 33(9), 1898-1905. doi:10.1016/j.wasman.2013.05.017 | es_ES |
dc.description.references | Ozen, E., Kiziltas, A., Kiziltas, E. E., & Gardner, D. J. (2013). Natural fiber blend-nylon 6 composites. Polymer Composites, 34(4), 544-553. doi:10.1002/pc.22463 | es_ES |
dc.description.references | Petchwattana, N., & Covavisaruch, S. (2013). Effects of rice hull particle size and content on the mechanical properties and visual appearance of wood plastic composites prepared from poly(vinyl chloride). Journal of Bionic Engineering, 10(1), 110-117. doi:10.1016/s1672-6529(13)60205-x | es_ES |
dc.description.references | Sailaja, R. R. N., & Deepthi, M. V. (2010). Mechanical and thermal properties of compatibilized composites of LDPE and esterified unbleached wood pulp. Polymer Composites, 32(2), 199-209. doi:10.1002/pc.21033 | es_ES |
dc.description.references | Shahi, P., Behravesh, A. H., Daryabari, S. Y., & Lotfi, M. (2012). Experimental investigation on reprocessing of extruded wood flour/HDPE composites. Polymer Composites, 33(5), 753-763. doi:10.1002/pc.22201 | es_ES |
dc.description.references | De Carvalho Neto, A. G. V., Ganzerli, T. A., Cardozo, A. L., Fávaro, S. L., Pereira, A. G. B., Girotto, E. M., & Radovanovic, E. (2013). Development of composites based on recycled polyethylene/sugarcane bagasse fibers. Polymer Composites, 35(4), 768-774. doi:10.1002/pc.22720 | es_ES |
dc.description.references | Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review. Polymer Engineering & Science, 49(7), 1253-1272. doi:10.1002/pen.21328 | es_ES |
dc.description.references | Karimi, A. N., Tajvidi, M., & Pourabbasi, S. (2007). Effect of compatibilizer on the natural durability of wood flour/high density polyethylene composites against rainbow fungus (Coriolus versicolor). Polymer Composites, 28(3), 273-277. doi:10.1002/pc.20305 | es_ES |
dc.description.references | Luo, S., Cao, J., & Peng, Y. (2013). Properties of glycerin-thermally modified wood flour/polypropylene composites. Polymer Composites, 35(2), 201-207. doi:10.1002/pc.22651 | es_ES |
dc.description.references | Matuana, L. M., Woodhams, R. T., Balatinecz, J. J., & Park, C. B. (1998). Influence of interfacial interactions on the properties of PVC/cellulosic fiber composites. Polymer Composites, 19(4), 446-455. doi:10.1002/pc.10119 | es_ES |
dc.description.references | Sobczak, L., Brüggemann, O., & Putz, R. F. (2012). Polyolefin composites with natural fibers and wood-modification of the fiber/filler-matrix interaction. Journal of Applied Polymer Science, 127(1), 1-17. doi:10.1002/app.36935 | es_ES |
dc.description.references | Toupe, J. L., Trokourey, A., & Rodrigue, D. (2013). Simultaneous optimization of the mechanical properties of postconsumer natural fiber/plastic composites: Phase compatibilization and quality/cost ratio. Polymer Composites, 35(4), 730-746. doi:10.1002/pc.22716 | es_ES |
dc.description.references | Xie, Y., Hill, C. A. S., Xiao, Z., Militz, H., & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41(7), 806-819. doi:10.1016/j.compositesa.2010.03.005 | es_ES |
dc.description.references | Xu, Y., Lee, S.-Y., & Wu, Q. (2011). Creep analysis of bamboo high-density polyethylene composites: Effect of interfacial treatment and fiber loading level. Polymer Composites, 32(5), 692-699. doi:10.1002/pc.21088 | es_ES |
dc.description.references | Zhu, L., Cao, J., Wang, Y., Liu, R., & Zhao, G. (2013). Effect of MAPP on interfacial compatibility of wood flour/polypropylene composite evaluated with dielectric approach. Polymer Composites, 35(3), 489-494. doi:10.1002/pc.22686 | es_ES |
dc.description.references | Mussatto, S. I. (2014). Brewer’s spent grain: a valuable feedstock for industrial applications. Journal of the Science of Food and Agriculture, 94(7), 1264-1275. doi:10.1002/jsfa.6486 | es_ES |
dc.description.references | Mussatto, S. I., Dragone, G., & Roberto, I. C. (2006). Brewers’ spent grain: generation, characteristics and potential applications. Journal of Cereal Science, 43(1), 1-14. doi:10.1016/j.jcs.2005.06.001 | es_ES |
dc.description.references | Mussatto, S. I., Fernandes, M., Rocha, G. J. M., Órfão, J. J. M., Teixeira, J. A., & Roberto, I. C. (2010). Production, characterization and application of activated carbon from brewer’s spent grain lignin. Bioresource Technology, 101(7), 2450-2457. doi:10.1016/j.biortech.2009.11.025 | es_ES |
dc.description.references | Mussatto, S. I., Moncada, J., Roberto, I. C., & Cardona, C. A. (2013). Techno-economic analysis for brewer’s spent grains use on a biorefinery concept: The Brazilian case. Bioresource Technology, 148, 302-310. doi:10.1016/j.biortech.2013.08.046 | es_ES |
dc.description.references | Pejin, J., Radosavljevic, M., Grujic, O., Mojovic, L., Kocic-Tanackov, S., Nikolic, S., & Djukic-Vukovic, A. (2013). Possible application of brewer’s spent grain in biotechnology. Hemijska industrija, 67(2), 277-291. doi:10.2298/hemind120410065p | es_ES |
dc.description.references | Vieira, E., Rocha, M. A. M., Coelho, E., Pinho, O., Saraiva, J. A., Ferreira, I. M. P. L. V. O., & Coimbra, M. A. (2014). Valuation of brewer’s spent grain using a fully recyclable integrated process for extraction of proteins and arabinoxylans. Industrial Crops and Products, 52, 136-143. doi:10.1016/j.indcrop.2013.10.012 | es_ES |
dc.description.references | Araujo, J. R., Adamo, C. B., Costa e Silva, M. V., & De Paoli, M.-A. (2013). Antistatic-reinforced biocomposites of polyamide-6 and polyaniline-coated curauá fibers prepared on a pilot plant scale. Polymer Composites, 34(7), 1081-1090. doi:10.1002/pc.22516 | es_ES |
dc.description.references | Gu, R., Sain, M., & Kokta, B. V. (2014). Evaluation of wood composite additives in the mechanical property changes of PE blends. Polymer Composites, 36(2), 287-293. doi:10.1002/pc.22942 | es_ES |
dc.description.references | Pérez-Fonseca, A. A., Robledo-Ortíz, J. R., Moscoso-Sánchez, F. J., Rodrigue, D., & González-Núñez, R. (2013). Injection molded self-hybrid composites based on polypropylene and natural fibers. Polymer Composites, 35(9), 1798-1806. doi:10.1002/pc.22834 | es_ES |
dc.description.references | Naghmouchi, I., Espinach, F. X., Mutjé, P., & Boufi, S. (2015). Polypropylene composites based on lignocellulosic fillers: How the filler morphology affects the composite properties. Materials & Design (1980-2015), 65, 454-461. doi:10.1016/j.matdes.2014.09.047 | es_ES |
dc.description.references | Poletto, M., Zattera, A. J., & Santana, R. M. C. (2014). Effect of natural oils on the thermal stability and degradation kinetics of recycled polypropylene wood flour composites. Polymer Composites, 35(10), 1935-1942. doi:10.1002/pc.22852 | es_ES |
dc.description.references | Wang, W., Yang, X., Bu, F., & Sui, S. (2014). Properties of rice husk-HDPE composites after exposure to thermo-treatment. Polymer Composites, 35(11), 2180-2186. doi:10.1002/pc.22882 | es_ES |
dc.description.references | Kakroodi, A. R., & Rodrigue, D. (2014). Impact modification of polypropylene-based composites using surface-coated waste rubber crumbs. Polymer Composites, 35(11), 2280-2289. doi:10.1002/pc.22893 | es_ES |
dc.description.references | Connolly, A., Piggott, C. O., & FitzGerald, R. J. (2013). Characterisation of protein-rich isolates and antioxidative phenolic extracts from pale and black brewers’ spent grain. International Journal of Food Science & Technology, 48(8), 1670-1681. doi:10.1111/ijfs.12137 | es_ES |
dc.description.references | McCarthy, A. L., O’Callaghan, Y. C., Connolly, A., Piggott, C. O., FitzGerald, R. J., & O’Brien, N. M. (2013). Phenolic-enriched fractions from brewers’ spent grain possess cellular antioxidant and immunomodulatory effects in cell culture model systems. Journal of the Science of Food and Agriculture, 94(7), 1373-1379. doi:10.1002/jsfa.6421 | es_ES |
dc.description.references | Moreira, M. M., Morais, S., Barros, A. A., Delerue-Matos, C., & Guido, L. F. (2012). A novel application of microwave-assisted extraction of polyphenols from brewer’s spent grain with HPLC-DAD-MS analysis. Analytical and Bioanalytical Chemistry, 403(4), 1019-1029. doi:10.1007/s00216-011-5703-y | es_ES |
dc.description.references | Moreira, M. M., Morais, S., Carvalho, D. O., Barros, A. A., Delerue-Matos, C., & Guido, L. F. (2013). Brewer’s spent grain from different types of malt: Evaluation of the antioxidant activity and identification of the major phenolic compounds. Food Research International, 54(1), 382-388. doi:10.1016/j.foodres.2013.07.023 | es_ES |
dc.description.references | McCarthy, A. L., O’Callaghan, Y. C., Neugart, S., Piggott, C. O., Connolly, A., Jansen, M. A. K., … O’Brien, N. M. (2013). The hydroxycinnamic acid content of barley and brewers’ spent grain (BSG) and the potential to incorporate phenolic extracts of BSG as antioxidants into fruit beverages. Food Chemistry, 141(3), 2567-2574. doi:10.1016/j.foodchem.2013.05.048 | es_ES |
dc.description.references | Tajvidi, M., & Takemura, A. (2009). Effect of fiber content and type, compatibilizer, and heating rate on thermogravimetric properties of natural fiber high density polyethylene composites. Polymer Composites, 30(9), 1226-1233. doi:10.1002/pc.20682 | es_ES |