- -

Upgrading brewer's spent grain as functional filler in polypropylene matrix

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Upgrading brewer's spent grain as functional filler in polypropylene matrix

Mostrar el registro completo del ítem

Revert, A.; Reig Pérez, MJ.; Segui Llinares, VJ.; Boronat Vitoria, T.; Fombuena Borrás, V.; Balart Gimeno, RA. (2017). Upgrading brewer's spent grain as functional filler in polypropylene matrix. Polymer Composites. 38(1):40-47. doi:10.1002/pc.23558

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/84890

Ficheros en el ítem

Metadatos del ítem

Título: Upgrading brewer's spent grain as functional filler in polypropylene matrix
Autor: Revert, A. Reig Pérez, Miguel Jorge Segui Llinares, Vicente Jesús Boronat Vitoria, Teodomiro Fombuena Borrás, Vicent Balart Gimeno, Rafael Antonio
Entidad UPV: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi
Fecha difusión:
Resumen:
Brewer's spent grain (BSG) is a by-product of the brewing industry that contributes to a large volume of wastes. The lignocellulosic nature of this waste, together with presence of functional components such as antioxidants, ...[+]
Palabras clave: Wood-plastic composite , Density polyethylene composites , Mechanical-properties , Poly(vinyl chloride) , Phenolic extracts , Decking products , Natural fibers , Performance , Waste , Compatibilizer
Derechos de uso: Cerrado
Fuente:
Polymer Composites. (issn: 0272-8397 ) (eissn: 1548-0569 )
DOI: 10.1002/pc.23558
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/pc.23558
Tipo: Artículo

References

Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries! Bioresource Technology, 99(11), 4661-4667. doi:10.1016/j.biortech.2007.09.043

Ayrilmis, N., Jarusombuti, S., Fueangvivat, V., Bauchongkol, P., & White, R. H. (2011). Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fibers and Polymers, 12(7), 919-926. doi:10.1007/s12221-011-0919-1

Hemmati, F., & Garmabi, H. (2012). A study on fire retardancy and durability performance of bagasse fiber/polypropylene composite for outdoor applications. Journal of Thermoplastic Composite Materials, 26(8), 1041-1056. doi:10.1177/0892705711433350 [+]
Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries! Bioresource Technology, 99(11), 4661-4667. doi:10.1016/j.biortech.2007.09.043

Ayrilmis, N., Jarusombuti, S., Fueangvivat, V., Bauchongkol, P., & White, R. H. (2011). Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fibers and Polymers, 12(7), 919-926. doi:10.1007/s12221-011-0919-1

Hemmati, F., & Garmabi, H. (2012). A study on fire retardancy and durability performance of bagasse fiber/polypropylene composite for outdoor applications. Journal of Thermoplastic Composite Materials, 26(8), 1041-1056. doi:10.1177/0892705711433350

Li, L., Gong, M., & Li, D. (2013). Evaluation of the kinetic friction performance of modified wood decking products. Construction and Building Materials, 40, 863-868. doi:10.1016/j.conbuildmat.2012.11.033

Seefeldt, H., & Braun, U. (2011). Burning behavior of wood-plastic composite decking boards in end-use conditions: the effects of geometry, material composition, and moisture. Journal of Fire Sciences, 30(1), 41-54. doi:10.1177/0734904111423488

Xanthos, M., Dey, S. K., Mitra, S., Yilmazer, U., & Feng, C. (2002). Prototypes for building applications based on thermoplastic composites containing mixed waste plastics. Polymer Composites, 23(2), 153-163. doi:10.1002/pc.10421

Bledzki, A. K., Letman-Sakiewicz, M., & Murr, M. (2010). Influence of static and cyclic climate condition on bending properties of wood plastic composites (WPC). Express Polymer Letters, 4(6), 364-372. doi:10.3144/expresspolymlett.2010.46

Li, L., Gong, M., & Li, D. (2012). Evaluation of the slip resistance of modified wood decking products. Construction and Building Materials, 35, 440-443. doi:10.1016/j.conbuildmat.2012.04.015

Kazemi, Y., Cloutier, A., & Rodrigue, D. (2013). Mechanical and morphological properties of wood plastic composites based on municipal plastic waste. Polymer Composites, 34(4), 487-493. doi:10.1002/pc.22442

Khalil, H. A., Tehrani, M., Davoudpour, Y., Bhat, A., Jawaid, M., & Hassan, A. (2012). Natural fiber reinforced poly(vinyl chloride) composites: A review. Journal of Reinforced Plastics and Composites, 32(5), 330-356. doi:10.1177/0731684412458553

Kim, B.-J., Yao, F., Han, G., & Wu, Q. (2011). Performance of bamboo plastic composites with hybrid bamboo and precipitated calcium carbonate fillers. Polymer Composites, 33(1), 68-78. doi:10.1002/pc.21244

Kumar, V., Tyagi, L., & Sinha, S. (2011). Wood flour–reinforced plastic composites: a review. Reviews in Chemical Engineering, 27(5-6). doi:10.1515/revce.2011.006

Kazemi Najafi, S. (2013). Use of recycled plastics in wood plastic composites – A review. Waste Management, 33(9), 1898-1905. doi:10.1016/j.wasman.2013.05.017

Ozen, E., Kiziltas, A., Kiziltas, E. E., & Gardner, D. J. (2013). Natural fiber blend-nylon 6 composites. Polymer Composites, 34(4), 544-553. doi:10.1002/pc.22463

Petchwattana, N., & Covavisaruch, S. (2013). Effects of rice hull particle size and content on the mechanical properties and visual appearance of wood plastic composites prepared from poly(vinyl chloride). Journal of Bionic Engineering, 10(1), 110-117. doi:10.1016/s1672-6529(13)60205-x

Sailaja, R. R. N., & Deepthi, M. V. (2010). Mechanical and thermal properties of compatibilized composites of LDPE and esterified unbleached wood pulp. Polymer Composites, 32(2), 199-209. doi:10.1002/pc.21033

Shahi, P., Behravesh, A. H., Daryabari, S. Y., & Lotfi, M. (2012). Experimental investigation on reprocessing of extruded wood flour/HDPE composites. Polymer Composites, 33(5), 753-763. doi:10.1002/pc.22201

De Carvalho Neto, A. G. V., Ganzerli, T. A., Cardozo, A. L., Fávaro, S. L., Pereira, A. G. B., Girotto, E. M., & Radovanovic, E. (2013). Development of composites based on recycled polyethylene/sugarcane bagasse fibers. Polymer Composites, 35(4), 768-774. doi:10.1002/pc.22720

Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review. Polymer Engineering & Science, 49(7), 1253-1272. doi:10.1002/pen.21328

Karimi, A. N., Tajvidi, M., & Pourabbasi, S. (2007). Effect of compatibilizer on the natural durability of wood flour/high density polyethylene composites against rainbow fungus (Coriolus versicolor). Polymer Composites, 28(3), 273-277. doi:10.1002/pc.20305

Luo, S., Cao, J., & Peng, Y. (2013). Properties of glycerin-thermally modified wood flour/polypropylene composites. Polymer Composites, 35(2), 201-207. doi:10.1002/pc.22651

Matuana, L. M., Woodhams, R. T., Balatinecz, J. J., & Park, C. B. (1998). Influence of interfacial interactions on the properties of PVC/cellulosic fiber composites. Polymer Composites, 19(4), 446-455. doi:10.1002/pc.10119

Sobczak, L., Brüggemann, O., & Putz, R. F. (2012). Polyolefin composites with natural fibers and wood-modification of the fiber/filler-matrix interaction. Journal of Applied Polymer Science, 127(1), 1-17. doi:10.1002/app.36935

Toupe, J. L., Trokourey, A., & Rodrigue, D. (2013). Simultaneous optimization of the mechanical properties of postconsumer natural fiber/plastic composites: Phase compatibilization and quality/cost ratio. Polymer Composites, 35(4), 730-746. doi:10.1002/pc.22716

Xie, Y., Hill, C. A. S., Xiao, Z., Militz, H., & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41(7), 806-819. doi:10.1016/j.compositesa.2010.03.005

Xu, Y., Lee, S.-Y., & Wu, Q. (2011). Creep analysis of bamboo high-density polyethylene composites: Effect of interfacial treatment and fiber loading level. Polymer Composites, 32(5), 692-699. doi:10.1002/pc.21088

Zhu, L., Cao, J., Wang, Y., Liu, R., & Zhao, G. (2013). Effect of MAPP on interfacial compatibility of wood flour/polypropylene composite evaluated with dielectric approach. Polymer Composites, 35(3), 489-494. doi:10.1002/pc.22686

Mussatto, S. I. (2014). Brewer’s spent grain: a valuable feedstock for industrial applications. Journal of the Science of Food and Agriculture, 94(7), 1264-1275. doi:10.1002/jsfa.6486

Mussatto, S. I., Dragone, G., & Roberto, I. C. (2006). Brewers’ spent grain: generation, characteristics and potential applications. Journal of Cereal Science, 43(1), 1-14. doi:10.1016/j.jcs.2005.06.001

Mussatto, S. I., Fernandes, M., Rocha, G. J. M., Órfão, J. J. M., Teixeira, J. A., & Roberto, I. C. (2010). Production, characterization and application of activated carbon from brewer’s spent grain lignin. Bioresource Technology, 101(7), 2450-2457. doi:10.1016/j.biortech.2009.11.025

Mussatto, S. I., Moncada, J., Roberto, I. C., & Cardona, C. A. (2013). Techno-economic analysis for brewer’s spent grains use on a biorefinery concept: The Brazilian case. Bioresource Technology, 148, 302-310. doi:10.1016/j.biortech.2013.08.046

Pejin, J., Radosavljevic, M., Grujic, O., Mojovic, L., Kocic-Tanackov, S., Nikolic, S., & Djukic-Vukovic, A. (2013). Possible application of brewer’s spent grain in biotechnology. Hemijska industrija, 67(2), 277-291. doi:10.2298/hemind120410065p

Vieira, E., Rocha, M. A. M., Coelho, E., Pinho, O., Saraiva, J. A., Ferreira, I. M. P. L. V. O., & Coimbra, M. A. (2014). Valuation of brewer’s spent grain using a fully recyclable integrated process for extraction of proteins and arabinoxylans. Industrial Crops and Products, 52, 136-143. doi:10.1016/j.indcrop.2013.10.012

Araujo, J. R., Adamo, C. B., Costa e Silva, M. V., & De Paoli, M.-A. (2013). Antistatic-reinforced biocomposites of polyamide-6 and polyaniline-coated curauá fibers prepared on a pilot plant scale. Polymer Composites, 34(7), 1081-1090. doi:10.1002/pc.22516

Gu, R., Sain, M., & Kokta, B. V. (2014). Evaluation of wood composite additives in the mechanical property changes of PE blends. Polymer Composites, 36(2), 287-293. doi:10.1002/pc.22942

Pérez-Fonseca, A. A., Robledo-Ortíz, J. R., Moscoso-Sánchez, F. J., Rodrigue, D., & González-Núñez, R. (2013). Injection molded self-hybrid composites based on polypropylene and natural fibers. Polymer Composites, 35(9), 1798-1806. doi:10.1002/pc.22834

Naghmouchi, I., Espinach, F. X., Mutjé, P., & Boufi, S. (2015). Polypropylene composites based on lignocellulosic fillers: How the filler morphology affects the composite properties. Materials & Design (1980-2015), 65, 454-461. doi:10.1016/j.matdes.2014.09.047

Poletto, M., Zattera, A. J., & Santana, R. M. C. (2014). Effect of natural oils on the thermal stability and degradation kinetics of recycled polypropylene wood flour composites. Polymer Composites, 35(10), 1935-1942. doi:10.1002/pc.22852

Wang, W., Yang, X., Bu, F., & Sui, S. (2014). Properties of rice husk-HDPE composites after exposure to thermo-treatment. Polymer Composites, 35(11), 2180-2186. doi:10.1002/pc.22882

Kakroodi, A. R., & Rodrigue, D. (2014). Impact modification of polypropylene-based composites using surface-coated waste rubber crumbs. Polymer Composites, 35(11), 2280-2289. doi:10.1002/pc.22893

Connolly, A., Piggott, C. O., & FitzGerald, R. J. (2013). Characterisation of protein-rich isolates and antioxidative phenolic extracts from pale and black brewers’ spent grain. International Journal of Food Science & Technology, 48(8), 1670-1681. doi:10.1111/ijfs.12137

McCarthy, A. L., O’Callaghan, Y. C., Connolly, A., Piggott, C. O., FitzGerald, R. J., & O’Brien, N. M. (2013). Phenolic-enriched fractions from brewers’ spent grain possess cellular antioxidant and immunomodulatory effects in cell culture model systems. Journal of the Science of Food and Agriculture, 94(7), 1373-1379. doi:10.1002/jsfa.6421

Moreira, M. M., Morais, S., Barros, A. A., Delerue-Matos, C., & Guido, L. F. (2012). A novel application of microwave-assisted extraction of polyphenols from brewer’s spent grain with HPLC-DAD-MS analysis. Analytical and Bioanalytical Chemistry, 403(4), 1019-1029. doi:10.1007/s00216-011-5703-y

Moreira, M. M., Morais, S., Carvalho, D. O., Barros, A. A., Delerue-Matos, C., & Guido, L. F. (2013). Brewer’s spent grain from different types of malt: Evaluation of the antioxidant activity and identification of the major phenolic compounds. Food Research International, 54(1), 382-388. doi:10.1016/j.foodres.2013.07.023

McCarthy, A. L., O’Callaghan, Y. C., Neugart, S., Piggott, C. O., Connolly, A., Jansen, M. A. K., … O’Brien, N. M. (2013). The hydroxycinnamic acid content of barley and brewers’ spent grain (BSG) and the potential to incorporate phenolic extracts of BSG as antioxidants into fruit beverages. Food Chemistry, 141(3), 2567-2574. doi:10.1016/j.foodchem.2013.05.048

Tajvidi, M., & Takemura, A. (2009). Effect of fiber content and type, compatibilizer, and heating rate on thermogravimetric properties of natural fiber high density polyethylene composites. Polymer Composites, 30(9), 1226-1233. doi:10.1002/pc.20682

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem