- -

Ammonia IRMS-TPD measurements on Brønsted acidity of proton-formed SAPO-34

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ammonia IRMS-TPD measurements on Brønsted acidity of proton-formed SAPO-34

Mostrar el registro completo del ítem

Suzuki, K.; Nishio, T.; Katada, N.; Sastre Navarro, GI.; Niwa, M. (2011). Ammonia IRMS-TPD measurements on Brønsted acidity of proton-formed SAPO-34. Physical Chemistry Chemical Physics. 13(8):3311-3318. https://doi.org/10.1039/c0cp00961j

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/84999

Ficheros en el ítem

Metadatos del ítem

Título: Ammonia IRMS-TPD measurements on Brønsted acidity of proton-formed SAPO-34
Autor: Suzuki, Katsuki Nishio, Takuma Katada, Naonobu Sastre Navarro, German Ignacio Niwa, Miki
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] By utilizing the advantages of a combined method of IRMS-TPD of ammonia and DFT calculations, the solid acidity of HSAPO-34 was studied. The number, strength and structure of the Bronsted OH were measured experimentally. ...[+]
Palabras clave: SILICOALUMINOPHOSPHATE MOLECULAR-SIEVES , DENSITY-FUNCTIONAL CALCULATION , LIGHT OLEFINS , QUANTITATIVE MEASUREMENTS , DFT CALCULATION , CONVERSION , METHANOL , ZEOLITE , CATALYST , SITES
Derechos de uso: Cerrado
Fuente:
Physical Chemistry Chemical Physics. (issn: 1463-9076 ) (eissn: 1463-9084 )
DOI: 10.1039/c0cp00961j
Editorial:
Royal Society of Chemistry
Versión del editor: http://doi.org/10.1039/c0cp00961j
Código del Proyecto:
info:eu-repo/grantAgreement/MEXT//C: 20560721/
info:eu-repo/grantAgreement/MEXT//B: 21360396/
Agradecimientos:
This work is supported by the Grant-in-Aid for Scientific Research (B: 21360396 and C: 20560721) from Ministry of Education, Culture, Sports, Science and Technology, Japan.
Tipo: Artículo

References

Lok, B. M., Messina, C. A., Patton, R. L., Gajek, R. T., Cannan, T. R., & Flanigen, E. M. (1984). Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 106(20), 6092-6093. doi:10.1021/ja00332a063

Inui, T., & Kang, M. (1997). Reliable procedure for the synthesis of Ni-SAPO-34 as a highly selective catalyst for methanol to ethylene conversion. Applied Catalysis A: General, 164(1-2), 211-223. doi:10.1016/s0926-860x(97)00172-5

Kang, M., & Inui, T. (1998). Catalysis Letters, 53(3/4), 171-176. doi:10.1023/a:1019030627908 [+]
Lok, B. M., Messina, C. A., Patton, R. L., Gajek, R. T., Cannan, T. R., & Flanigen, E. M. (1984). Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 106(20), 6092-6093. doi:10.1021/ja00332a063

Inui, T., & Kang, M. (1997). Reliable procedure for the synthesis of Ni-SAPO-34 as a highly selective catalyst for methanol to ethylene conversion. Applied Catalysis A: General, 164(1-2), 211-223. doi:10.1016/s0926-860x(97)00172-5

Kang, M., & Inui, T. (1998). Catalysis Letters, 53(3/4), 171-176. doi:10.1023/a:1019030627908

Wei, Y., He, Y., Zhang, D., Xu, L., Meng, S., Liu, Z., & Su, B.-L. (2006). Study of Mn incorporation into SAPO framework: Synthesis, characterization and catalysis in chloromethane conversion to light olefins. Microporous and Mesoporous Materials, 90(1-3), 188-197. doi:10.1016/j.micromeso.2005.10.042

HOTEVAR, S. (1992). Acidity and catalytic activity of McAPSO-34 (Me = Co, Mn, Cr), SAPO-34, and H-ZSM-5 molecular sieves in methanol dehydration. Journal of Catalysis, 135(2), 518-532. doi:10.1016/0021-9517(92)90051-i

Djieugoue, M.-A., Prakash, A. M., & Kevan, L. (2000). Catalytic Study of Methanol-to-Olefins Conversion in Four Small-Pore Silicoaluminophosphate Molecular Sieves:  Influence of the Structural Type, Nickel Incorporation, Nickel Location, and Nickel Concentration. The Journal of Physical Chemistry B, 104(27), 6452-6461. doi:10.1021/jp000504j

Dahl, I. M., & Kolboe, S. (1994). On the Reaction Mechanism for Hydrocarbon Formation from Methanol over SAPO-34. Journal of Catalysis, 149(2), 458-464. doi:10.1006/jcat.1994.1312

Van Niekerk, M. J., Fletcher, J. C. Q., & O’Connor, C. T. (1996). Effect of catalyst modification on the conversion of methanol to light olefins over SAPO-34. Applied Catalysis A: General, 138(1), 135-145. doi:10.1016/0926-860x(95)00240-5

Wilson, S., & Barger, P. (1999). The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Microporous and Mesoporous Materials, 29(1-2), 117-126. doi:10.1016/s1387-1811(98)00325-4

Aguayo, A. T., Gayubo, A. G., Vivanco, R., Olazar, M., & Bilbao, J. (2005). Role of acidity and microporous structure in alternative catalysts for the transformation of methanol into olefins. Applied Catalysis A: General, 283(1-2), 197-207. doi:10.1016/j.apcata.2005.01.006

Valle, B., Alonso, A., Atutxa, A., Gayubo, A. G., & Bilbao, J. (2005). Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process. Catalysis Today, 106(1-4), 118-122. doi:10.1016/j.cattod.2005.07.132

Sastre, G., Lewis, D. W., & Catlow, C. R. A. (1997). Modeling of Silicon Substitution in SAPO-5 and SAPO-34 Molecular Sieves. The Journal of Physical Chemistry B, 101(27), 5249-5262. doi:10.1021/jp963736k

Tan, J., Liu, Z., Bao, X., Liu, X., Han, X., He, C., & Zhai, R. (2002). Crystallization and Si incorporation mechanisms of SAPO-34. Microporous and Mesoporous Materials, 53(1-3), 97-108. doi:10.1016/s1387-1811(02)00329-3

Niwa, M., Suzuki, K., Katada, N., Kanougi, T., & Atoguchi, T. (2005). Ammonia IRMS-TPD Study on the Distribution of Acid Sites in Mordenite. The Journal of Physical Chemistry B, 109(40), 18749-18757. doi:10.1021/jp051304g

Suzuki, K., Katada, N., & Niwa, M. (2007). Detection and Quantitative Measurements of Four Kinds of OH in HY Zeolite. The Journal of Physical Chemistry C, 111(2), 894-900. doi:10.1021/jp065054v

Suzuki, K., Sastre, G., Katada, N., & Niwa, M. (2007). Quantitative Measurements of Brønsted Acidity of Zeolites by Ammonia IRMS–TPD Method and Density Functional Calculation. Chemistry Letters, 36(8), 1034-1035. doi:10.1246/cl.2007.1034

Suzuki, K., Sastre, G., Katada, N., & Niwa, M. (2009). Periodic DFT Calculation of the Energy of Ammonia Adsorption on Zeolite Brønsted Acid Sites to Support the Ammonia IRMS–TPD Experiment. Chemistry Letters, 38(4), 354-355. doi:10.1246/cl.2009.354

Suzuki, K., Sastre, G., Katada, N., & Niwa, M. (2007). Ammonia IRMS-TPD measurements and DFT calculation on acidic hydroxyl groups in CHA-type zeolites. Physical Chemistry Chemical Physics, 9(45), 5980. doi:10.1039/b711961e

Suzuki, K., Noda, T., Sastre, G., Katada, N., & Niwa, M. (2009). Periodic Density Functional Calculation on the Brønsted Acidity of Modified Y-Type Zeolite. The Journal of Physical Chemistry C, 113(14), 5672-5680. doi:10.1021/jp8104562

Watanabe, Y., Koiwai, A., Takeuchi, H., Hyodo, S. A., & Noda, S. (1993). Multinuclear NMR Studies on the Thermal Stability of SAPO-34. Journal of Catalysis, 143(2), 430-436. doi:10.1006/jcat.1993.1287

Klinowski, J., Thomas, J. M., Fyfe, C. A., & Gobbi, G. C. (1982). Monitoring of structural changes accompanying ultrastabilization of faujasitic zeolite catalysts. Nature, 296(5857), 533-536. doi:10.1038/296533a0

Niwa, M., Katada, N., Sawa, M., & Murakami, Y. (1995). Temperature-Programmed Desorption of Ammonia with Readsorption Based on the Derived Theoretical Equation. The Journal of Physical Chemistry, 99(21), 8812-8816. doi:10.1021/j100021a056

Smith, L., Cheetham, A. K., Marchese, L., Thomas, J. M., Wright, P. A., Chen, J., & Gianotti, E. (1996). A quantitative description of the active sites in the dehydrated acid catalyst HSAPO-34 for the conversion of methanol to olefins. Catalysis Letters, 41(1-2), 13-16. doi:10.1007/bf00811705

Martins, G. A. V., Berlier, G., Coluccia, S., Pastore, H. O., Superti, G. B., Gatti, G., & Marchese, L. (2007). Revisiting the Nature of the Acidity in Chabazite-Related Silicoaluminophosphates:  Combined FTIR and29Si MAS NMR Study. The Journal of Physical Chemistry C, 111(1), 330-339. doi:10.1021/jp063921q

Elanany, M., Koyama, M., Kubo, M., Selvam, P., & Miyamoto, A. (2004). Periodic density functional investigation of Brønsted acidity in isomorphously substituted chabazite and AlPO-34 molecular sieves. Microporous and Mesoporous Materials, 71(1-3), 51-56. doi:10.1016/j.micromeso.2004.03.018

Shah, R., Gale, J. D., & Payne, M. C. (1997). Comparing the acidities of zeolites and SAPOs from first principles. Chemical Communications, (1), 131-132. doi:10.1039/a605200b

Blackwell, C. S., & Patton, R. L. (1988). Solid-state NMR of silicoaluminophosphate molecular sieves and aluminophosphate materials. The Journal of Physical Chemistry, 92(13), 3965-3970. doi:10.1021/j100324a055

Sastre, G., Lewis, D. W., & Catlow, C. R. A. (1996). Structure and Stability of Silica Species in SAPO Molecular Sieves. The Journal of Physical Chemistry, 100(16), 6722-6730. doi:10.1021/jp953362f

Barthomeuf, D. (1994). Topological model for the compared acidity of SAPOs and SiAl zeolites. Zeolites, 14(6), 394-401. doi:10.1016/0144-2449(94)90164-3

Katada, N., Suzuki, K., Noda, T., Sastre, G., & Niwa, M. (2009). Correlation between Brønsted Acid Strength and Local Structure in Zeolites. The Journal of Physical Chemistry C, 113(44), 19208-19217. doi:10.1021/jp903788n

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem