- -

Ammonia IRMS-TPD measurements on Brønsted acidity of proton-formed SAPO-34

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ammonia IRMS-TPD measurements on Brønsted acidity of proton-formed SAPO-34

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Suzuki, Katsuki es_ES
dc.contributor.author Nishio, Takuma es_ES
dc.contributor.author Katada, Naonobu es_ES
dc.contributor.author Sastre Navarro, German Ignacio es_ES
dc.contributor.author Niwa, Miki es_ES
dc.date.accessioned 2017-07-12T09:19:13Z
dc.date.available 2017-07-12T09:19:13Z
dc.date.issued 2011
dc.identifier.issn 1463-9076
dc.identifier.uri http://hdl.handle.net/10251/84999
dc.description.abstract [EN] By utilizing the advantages of a combined method of IRMS-TPD of ammonia and DFT calculations, the solid acidity of HSAPO-34 was studied. The number, strength and structure of the Bronsted OH were measured experimentally. The quantitative measurements and DFT calculations supported the identification of Bronsted OH to account for the generation model of the Bronsted OH primarily located in the edge of the Si domain (island). The acid strength of SAPO-34 was slightly weaker than that of chabazite, a zeolite with the same structure. Thus, some important insights were obtained to understand the acid site generation of SAPO-34. es_ES
dc.description.sponsorship This work is supported by the Grant-in-Aid for Scientific Research (B: 21360396 and C: 20560721) from Ministry of Education, Culture, Sports, Science and Technology, Japan. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject SILICOALUMINOPHOSPHATE MOLECULAR-SIEVES es_ES
dc.subject DENSITY-FUNCTIONAL CALCULATION es_ES
dc.subject LIGHT OLEFINS es_ES
dc.subject QUANTITATIVE MEASUREMENTS es_ES
dc.subject DFT CALCULATION es_ES
dc.subject CONVERSION es_ES
dc.subject METHANOL es_ES
dc.subject ZEOLITE es_ES
dc.subject CATALYST es_ES
dc.subject SITES es_ES
dc.title Ammonia IRMS-TPD measurements on Brønsted acidity of proton-formed SAPO-34 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c0cp00961j
dc.relation.projectID info:eu-repo/grantAgreement/MEXT//C: 20560721/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEXT//B: 21360396/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Suzuki, K.; Nishio, T.; Katada, N.; Sastre Navarro, GI.; Niwa, M. (2011). Ammonia IRMS-TPD measurements on Brønsted acidity of proton-formed SAPO-34. Physical Chemistry Chemical Physics. 13(8):3311-3318. https://doi.org/10.1039/c0cp00961j es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1039/c0cp00961j es_ES
dc.description.upvformatpinicio 3311 es_ES
dc.description.upvformatpfin 3318 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 215075 es_ES
dc.identifier.eissn 1463-9084
dc.identifier.pmid 21170432
dc.contributor.funder Ministry of Education, Culture, Sports, Science and Technology, Japón es_ES
dc.description.references Lok, B. M., Messina, C. A., Patton, R. L., Gajek, R. T., Cannan, T. R., & Flanigen, E. M. (1984). Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 106(20), 6092-6093. doi:10.1021/ja00332a063 es_ES
dc.description.references Inui, T., & Kang, M. (1997). Reliable procedure for the synthesis of Ni-SAPO-34 as a highly selective catalyst for methanol to ethylene conversion. Applied Catalysis A: General, 164(1-2), 211-223. doi:10.1016/s0926-860x(97)00172-5 es_ES
dc.description.references Kang, M., & Inui, T. (1998). Catalysis Letters, 53(3/4), 171-176. doi:10.1023/a:1019030627908 es_ES
dc.description.references Wei, Y., He, Y., Zhang, D., Xu, L., Meng, S., Liu, Z., & Su, B.-L. (2006). Study of Mn incorporation into SAPO framework: Synthesis, characterization and catalysis in chloromethane conversion to light olefins. Microporous and Mesoporous Materials, 90(1-3), 188-197. doi:10.1016/j.micromeso.2005.10.042 es_ES
dc.description.references HOTEVAR, S. (1992). Acidity and catalytic activity of McAPSO-34 (Me = Co, Mn, Cr), SAPO-34, and H-ZSM-5 molecular sieves in methanol dehydration. Journal of Catalysis, 135(2), 518-532. doi:10.1016/0021-9517(92)90051-i es_ES
dc.description.references Djieugoue, M.-A., Prakash, A. M., & Kevan, L. (2000). Catalytic Study of Methanol-to-Olefins Conversion in Four Small-Pore Silicoaluminophosphate Molecular Sieves:  Influence of the Structural Type, Nickel Incorporation, Nickel Location, and Nickel Concentration. The Journal of Physical Chemistry B, 104(27), 6452-6461. doi:10.1021/jp000504j es_ES
dc.description.references Dahl, I. M., & Kolboe, S. (1994). On the Reaction Mechanism for Hydrocarbon Formation from Methanol over SAPO-34. Journal of Catalysis, 149(2), 458-464. doi:10.1006/jcat.1994.1312 es_ES
dc.description.references Van Niekerk, M. J., Fletcher, J. C. Q., & O’Connor, C. T. (1996). Effect of catalyst modification on the conversion of methanol to light olefins over SAPO-34. Applied Catalysis A: General, 138(1), 135-145. doi:10.1016/0926-860x(95)00240-5 es_ES
dc.description.references Wilson, S., & Barger, P. (1999). The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Microporous and Mesoporous Materials, 29(1-2), 117-126. doi:10.1016/s1387-1811(98)00325-4 es_ES
dc.description.references Aguayo, A. T., Gayubo, A. G., Vivanco, R., Olazar, M., & Bilbao, J. (2005). Role of acidity and microporous structure in alternative catalysts for the transformation of methanol into olefins. Applied Catalysis A: General, 283(1-2), 197-207. doi:10.1016/j.apcata.2005.01.006 es_ES
dc.description.references Valle, B., Alonso, A., Atutxa, A., Gayubo, A. G., & Bilbao, J. (2005). Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process. Catalysis Today, 106(1-4), 118-122. doi:10.1016/j.cattod.2005.07.132 es_ES
dc.description.references Sastre, G., Lewis, D. W., & Catlow, C. R. A. (1997). Modeling of Silicon Substitution in SAPO-5 and SAPO-34 Molecular Sieves. The Journal of Physical Chemistry B, 101(27), 5249-5262. doi:10.1021/jp963736k es_ES
dc.description.references Tan, J., Liu, Z., Bao, X., Liu, X., Han, X., He, C., & Zhai, R. (2002). Crystallization and Si incorporation mechanisms of SAPO-34. Microporous and Mesoporous Materials, 53(1-3), 97-108. doi:10.1016/s1387-1811(02)00329-3 es_ES
dc.description.references Niwa, M., Suzuki, K., Katada, N., Kanougi, T., & Atoguchi, T. (2005). Ammonia IRMS-TPD Study on the Distribution of Acid Sites in Mordenite. The Journal of Physical Chemistry B, 109(40), 18749-18757. doi:10.1021/jp051304g es_ES
dc.description.references Suzuki, K., Katada, N., & Niwa, M. (2007). Detection and Quantitative Measurements of Four Kinds of OH in HY Zeolite. The Journal of Physical Chemistry C, 111(2), 894-900. doi:10.1021/jp065054v es_ES
dc.description.references Suzuki, K., Sastre, G., Katada, N., & Niwa, M. (2007). Quantitative Measurements of Brønsted Acidity of Zeolites by Ammonia IRMS–TPD Method and Density Functional Calculation. Chemistry Letters, 36(8), 1034-1035. doi:10.1246/cl.2007.1034 es_ES
dc.description.references Suzuki, K., Sastre, G., Katada, N., & Niwa, M. (2009). Periodic DFT Calculation of the Energy of Ammonia Adsorption on Zeolite Brønsted Acid Sites to Support the Ammonia IRMS–TPD Experiment. Chemistry Letters, 38(4), 354-355. doi:10.1246/cl.2009.354 es_ES
dc.description.references Suzuki, K., Sastre, G., Katada, N., & Niwa, M. (2007). Ammonia IRMS-TPD measurements and DFT calculation on acidic hydroxyl groups in CHA-type zeolites. Physical Chemistry Chemical Physics, 9(45), 5980. doi:10.1039/b711961e es_ES
dc.description.references Suzuki, K., Noda, T., Sastre, G., Katada, N., & Niwa, M. (2009). Periodic Density Functional Calculation on the Brønsted Acidity of Modified Y-Type Zeolite. The Journal of Physical Chemistry C, 113(14), 5672-5680. doi:10.1021/jp8104562 es_ES
dc.description.references Watanabe, Y., Koiwai, A., Takeuchi, H., Hyodo, S. A., & Noda, S. (1993). Multinuclear NMR Studies on the Thermal Stability of SAPO-34. Journal of Catalysis, 143(2), 430-436. doi:10.1006/jcat.1993.1287 es_ES
dc.description.references Klinowski, J., Thomas, J. M., Fyfe, C. A., & Gobbi, G. C. (1982). Monitoring of structural changes accompanying ultrastabilization of faujasitic zeolite catalysts. Nature, 296(5857), 533-536. doi:10.1038/296533a0 es_ES
dc.description.references Niwa, M., Katada, N., Sawa, M., & Murakami, Y. (1995). Temperature-Programmed Desorption of Ammonia with Readsorption Based on the Derived Theoretical Equation. The Journal of Physical Chemistry, 99(21), 8812-8816. doi:10.1021/j100021a056 es_ES
dc.description.references Smith, L., Cheetham, A. K., Marchese, L., Thomas, J. M., Wright, P. A., Chen, J., & Gianotti, E. (1996). A quantitative description of the active sites in the dehydrated acid catalyst HSAPO-34 for the conversion of methanol to olefins. Catalysis Letters, 41(1-2), 13-16. doi:10.1007/bf00811705 es_ES
dc.description.references Martins, G. A. V., Berlier, G., Coluccia, S., Pastore, H. O., Superti, G. B., Gatti, G., & Marchese, L. (2007). Revisiting the Nature of the Acidity in Chabazite-Related Silicoaluminophosphates:  Combined FTIR and29Si MAS NMR Study. The Journal of Physical Chemistry C, 111(1), 330-339. doi:10.1021/jp063921q es_ES
dc.description.references Elanany, M., Koyama, M., Kubo, M., Selvam, P., & Miyamoto, A. (2004). Periodic density functional investigation of Brønsted acidity in isomorphously substituted chabazite and AlPO-34 molecular sieves. Microporous and Mesoporous Materials, 71(1-3), 51-56. doi:10.1016/j.micromeso.2004.03.018 es_ES
dc.description.references Shah, R., Gale, J. D., & Payne, M. C. (1997). Comparing the acidities of zeolites and SAPOs from first principles. Chemical Communications, (1), 131-132. doi:10.1039/a605200b es_ES
dc.description.references Blackwell, C. S., & Patton, R. L. (1988). Solid-state NMR of silicoaluminophosphate molecular sieves and aluminophosphate materials. The Journal of Physical Chemistry, 92(13), 3965-3970. doi:10.1021/j100324a055 es_ES
dc.description.references Sastre, G., Lewis, D. W., & Catlow, C. R. A. (1996). Structure and Stability of Silica Species in SAPO Molecular Sieves. The Journal of Physical Chemistry, 100(16), 6722-6730. doi:10.1021/jp953362f es_ES
dc.description.references Barthomeuf, D. (1994). Topological model for the compared acidity of SAPOs and SiAl zeolites. Zeolites, 14(6), 394-401. doi:10.1016/0144-2449(94)90164-3 es_ES
dc.description.references Katada, N., Suzuki, K., Noda, T., Sastre, G., & Niwa, M. (2009). Correlation between Brønsted Acid Strength and Local Structure in Zeolites. The Journal of Physical Chemistry C, 113(44), 19208-19217. doi:10.1021/jp903788n es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem