Mostrar el registro sencillo del ítem
dc.contributor.author | Armesto Ángel, Leopoldo | es_ES |
dc.contributor.author | Fuentes-Durá, Pedro | es_ES |
dc.contributor.author | Perry, David Richard | es_ES |
dc.date.accessioned | 2017-07-12T15:15:46Z | |
dc.date.available | 2017-07-12T15:15:46Z | |
dc.date.issued | 2016-01 | |
dc.identifier.issn | 0921-0296 | |
dc.identifier.uri | http://hdl.handle.net/10251/85023 | |
dc.description | The final publication is available at Springer via http://dx.doi.org/10.1007/s10846-015-0199-x | es_ES |
dc.description.abstract | The wider availability of 3D printing has enabled small printable robots (or printbots) to be incorporated directly into engineering courses. Printbots can be used in many ways to enhance lifelong learning skills, strengthen understanding and foster teamwork and collaboration. The experiences outlined in this paper were used in our teaching during the last academic year, although much of the methodology and many of the activities have been used and developed over the past 8 years. They include project based assignments carried out by multidisciplinary and multicultural teams, a number of theoretical and practical classroom and laboratory activities all aimed at familiarizing students with fundamental concepts, programming and simulation, and which now form part of our regular robotics courses, and some brief descriptions of how printable robots are being used by students carrying out final projects for Bachelor and Master degrees. The online resources show many of these activities in action. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Journal of Intelligent and Robotic Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Printbot | es_ES |
dc.subject | Robot | es_ES |
dc.subject | Education | es_ES |
dc.subject | 3D printing | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.subject.classification | FILOLOGIA INGLESA | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Low-cost Printable Robots in Education | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10846-015-0199-x | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Lingüística Aplicada - Departament de Lingüística Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Armesto Ángel, L.; Fuentes-Durá, P.; Perry, DR. (2016). Low-cost Printable Robots in Education. Journal of Intelligent and Robotic Systems. 81(1):5-24. doi:10.1007/s10846-015-0199-x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10846-015-0199-x | es_ES |
dc.description.upvformatpinicio | 5 | es_ES |
dc.description.upvformatpfin | 24 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 81 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 305485 | es_ES |
dc.identifier.eissn | 1573-0409 | |
dc.description.references | Criteria for accrediting engineering programs (Unknown Month 2015, 2014). http://www.abet.org/eac-criteria-2014-2015 | es_ES |
dc.description.references | Board, N.S.: Moving forward to improve engineering education (2007). http://www.nsf.gov/pubs/2007/nsb07122/nsb07122.pdf | es_ES |
dc.description.references | Campion, G., Bastin, G., d’Andréa Novel, B.: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans. Robot. Autom. 12(1), 47–62 (1996) | es_ES |
dc.description.references | Carberry, A.R., Lee, H.-S., Ohland, M.W.: Measuring engineering design self-efficacy. J. Eng. Educ. 99(1), 71–79 (2010) | es_ES |
dc.description.references | Castro. A.: Robotic arm with 6 dof (2012). http://www.thingiverse.com/thing:30163 | es_ES |
dc.description.references | Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge MA (2005) | es_ES |
dc.description.references | d’Andréa Novel, B., Campion, G., Bastin, G.: Control of nonholonomic wheeled mobile robots by state feedback linearization. Int. J. Robot. Res. 14(6), 543–559 (1995) | es_ES |
dc.description.references | Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. Trans. ASME J. Appl. Mech 22(2), 215–221 (1955) | es_ES |
dc.description.references | Dowdall. J.: Rofi robot five (2012). http://www.projectbiped.com/prototypes/rofi | es_ES |
dc.description.references | Eliot, M., Howard, P., Nouwens, F., Stojcevski, A., Mann, L., Prpic, J., Gabb, R., Venkatesan, S., Kolmos, A.: Developing a conceptual model for the effective assessment of individual student learning in team-based subjects. Australas. J. Eng. Educ. 18(1), 105–112 (2012) | es_ES |
dc.description.references | Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. Robot. Autom. Mag. IEEE 4(1), 23–33 (1997) | es_ES |
dc.description.references | Fuentes-Dura, P., Armesto, L., Perry, D.: Multidisciplinary projects: Critical points and perceptions in valladolid in innovation and quality in engineering education. In: Innovation and Quality in Engineering Education, pp 315–331 (2012) | es_ES |
dc.description.references | Fuentes-Dura, P., Cazorla, M.P., Molina, M.G., Perry, D.: European project semester: Good practices for competence acquisition. In: Valencia Global, pp 165– 172 (2014) | es_ES |
dc.description.references | González, J., Barrientos, A., Prieto-Moreno, A., de Frutos, M.A.: Miniskybot 2 (2012). http://www.iearobotics.com/wiki/index.php?Miniskybot_2 | es_ES |
dc.description.references | Gonzalez-Gomez, J., Valero-Gomez, A., Prieto-Moreno, A., Abderrahim, M.: A new open source 3d-printable mobile robotic platform for education. In: Rckert, U., Joaquin, S., Felix, W. (eds.) Advances in Autonomous Mini Robots, pp 49–62. Springer, Berlin Heidelberg (2012) | es_ES |
dc.description.references | Gonzlez, J., Wagenaar, R. (eds.): Tuning Educational Structures in Europe University of Deusto and Groningen. Deusto (2003) | es_ES |
dc.description.references | Heinrich, E., Bhattacharya, M., Rayudu, R.: Preparation for lifelong learning using eportfolios. Eur. J. Eng. Educ. 32(6), 653–663 (2007) | es_ES |
dc.description.references | Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. The Int. J. Robot. Res. 5(1), 90–98 (1986) | es_ES |
dc.description.references | Krassman, J.: Quadcopter hummingbird ii (2013). http://www.thingiverse.com/thing:167721 | es_ES |
dc.description.references | Langevin, G.: Inmoov (2012). http://www.inmoov.fr | es_ES |
dc.description.references | Madox: ecanum wheel rover 2 (2011). http://www.madox.net/blog/2011/01/24/mecanum-wheel-rover-2 | es_ES |
dc.description.references | Miles, M.B., Analysis, A.M.: Huberman. Qualitative Data: An Expanded Sourcebook. SAGE Publications (1994) | es_ES |
dc.description.references | Minguez, J., Montano, L.: Nearness diagram (nd) navigation: Collision avoidance in troublesome scenarios. IEEE Trans. Robot. Autom. 20, 2004 (2004) | es_ES |
dc.description.references | Olalla: Caterpillator v1.1 (2011). http://www.thingiverse.com/thing:8559 | es_ES |
dc.description.references | Ollero, A.: Robótica. Manipuladores y robots móviles Marcombo, S.A. Barcelona (2001) | es_ES |
dc.description.references | Price, M.: Hf08 hexapod robot (2012). http://www.heliumfrog.com/hf08robot/hf08blog.html | es_ES |
dc.description.references | Rawat, K., Massiha, G.: A hands-on laboratory based approach to undergraduate robotics education. In: Proceedings of 2004 IEEE International Conference on Robotics and Automation 2, pp 1370–1374 (2004) | es_ES |
dc.description.references | Robotics, C.: Virtual experimentation robotic platform (v-rep) (2013). www.coppeliarobotics.com | es_ES |
dc.description.references | Scott, B.: Principles of problem and project based learning the aalborg model. Aalbord University (2010) | es_ES |
dc.description.references | Teichler, U., Schonburg, H.: editors. Comparative Perspectives on Higher Education and Graduate Employment and Work Experiences from Twelve Countries. Kluwer Pub. (2004) | es_ES |
dc.description.references | Ulrich, I., Borenstein, J.: Vfh+: reliable obstacle avoidance for fast mobile robots. In: Robotics and Automation, 1998. Proceedings, volume 2, pp 1572–1577 (1998) | es_ES |
dc.description.references | Verner, I., Waks, S., Kolberg, E.: Educational robotics An insight into systems engineering. Eur. J. Eng. Educ. 24(2), 201–212 (1999) | es_ES |
dc.description.references | C.y.A. Vicerrectorado de Estudios: Dimensiones competenciales upv (2013). http://www.upv.es/contenidos/ICEP/info/DimensionesCompetenciales.pdf | es_ES |
dc.description.references | Wampler, C.W.: Manipulator inverse kinematic solutions based on vector formulations and damped least squares methods. IEEE Trans. Syst. Man, Cybern. 16(1), 93–101 (1986) | es_ES |
dc.description.references | Weinberg, J., Yu, X.: Robotics in education Low-cost platforms for teaching integrated systems. Robot. Autom. Mag. IEEE 10(2), 4–6 (2003) | es_ES |