Mostrar el registro sencillo del ítem
dc.contributor.author | Carretero Paulet, Lorenzo | es_ES |
dc.contributor.author | Fares Riaño, Mario Ali | es_ES |
dc.date.accessioned | 2017-07-13T12:09:53Z | |
dc.date.available | 2017-07-13T12:09:53Z | |
dc.date.issued | 2012-11 | |
dc.identifier.issn | 0737-4038 | |
dc.identifier.uri | http://hdl.handle.net/10251/85098 | |
dc.description.abstract | [EN] Gene duplicates are a major source of evolutionary novelties in the form of new or specialized functions and play a key role in speciation. Gene duplicates are generated through whole genome duplications (WGD) or small-scale genome duplications (SSD). Although WGD preserves the stoichiometric relationships between duplicates, those arising from SSD are usually unbalanced and are expected to follow different evolutionary dynamics than those formed by WGD. To dissect the role of the mechanism of duplication in these differential dynamics and determine whether this role was shared across species, we performed a genome wide evolutionary analysis of gene duplications arising from the most recent WGD events and contemporary episodes of SSD in four model species representing distinct plant evolutionary lineages. We found an excess of relaxed purifying selection after duplication in SSD paralogs compared with WGD, most of which may have been the result of functional divergence events between gene copies as estimated by measures of genetic distances. These differences were significant in three angiosperm genomes but not in the moss species Physcomitrella patens. Although the comparison of models of evolution does not attribute a relevant role to the mechanism of duplication in the evolution duplicates, distribution of retained genes among Gene Ontology functional categories support the conclusion that evolution of gene duplicates depends on its origin of duplication (WGD and SSD) but, most importantly, on the species. Similar lineage-specific biases were also observed in protein network connectivity, translational efficiency, and selective constraints acting on synonymous codon usage. Although the mechanism of duplication may determine gene retention, our results attribute a dominant role to the species in determining the ultimate pattern of duplicate gene retention and reveal an unanticipated complexity in the evolutionary dynamics and functional specialization of duplicated genes in plants. | es_ES |
dc.description.sponsorship | This work has been performed making extensive use of PERL scripts and Bioperl and R packages. The authors thank the Bioperl community for continuous support. They are especially grateful to Ken Wolfe, Santiago F Elena, David L Robertson, and Manuel Rodriguez-Concepcion for critical reading of the manuscript. This work was supported by a grant from the Spanish Ministerio de Ciencia e Inovacion (BFU2009-12022) and a grant of the Research Frontiers Program (10/RFP/GEN2685) from Science Foundation Ireland. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press (OUP) | es_ES |
dc.relation.ispartof | Molecular Biology and Evolution | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Gene duplication | es_ES |
dc.subject | Functional specialization | es_ES |
dc.subject | Whole genome duplication | es_ES |
dc.subject | Small-scale genome duplication | es_ES |
dc.title | Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/molbev/mss162 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2009-12022/ES/Impacto De La Duplicacion Genomica En La Innovacion Y Geometria Funcional De Arabidopsis Thaliana/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/SFI/SFI Research Frontiers Programme (RFP)/10%2FRFP%2FGEN2685/IE/Understanding the Role of Heat-Shock Proteins in Evolutionary Innovation/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Carretero Paulet, L.; Fares Riaño, MA. (2012). Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications. Molecular Biology and Evolution. 29(11):3541-3551. https://doi.org/10.1093/molbev/mss162 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1093/molbev/mss162 | es_ES |
dc.description.upvformatpinicio | 3541 | es_ES |
dc.description.upvformatpfin | 3551 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 29 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.senia | 232821 | es_ES |
dc.identifier.pmid | 22734049 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Science Foundation Ireland | |
dc.description.references | Aharoni, A., Gaidukov, L., Khersonsky, O., Gould, S. M., Roodveldt, C., & Tawfik, D. S. (2004). The «evolvability» of promiscuous protein functions. Nature Genetics, 37(1), 73-76. doi:10.1038/ng1482 | es_ES |
dc.description.references | Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389 | es_ES |
dc.description.references | (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408(6814), 796-815. doi:10.1038/35048692 | es_ES |
dc.description.references | Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25-29. doi:10.1038/75556 | es_ES |
dc.description.references | Bielawski, J., & Yang, Z. (2004). A Maximum Likelihood Method for Detecting Functional Divergence at Individual Codon Sites, with Application to Gene Family Evolution. Journal of Molecular Evolution, 59(1). doi:10.1007/s00239-004-2597-8 | es_ES |
dc.description.references | Blanc, G. (2003). A Recent Polyploidy Superimposed on Older Large-Scale Duplications in the Arabidopsis Genome. Genome Research, 13(2), 137-144. doi:10.1101/gr.751803 | es_ES |
dc.description.references | Blanc, G., & Wolfe, K. H. (2004). Functional Divergence of Duplicated Genes Formed by Polyploidy during Arabidopsis Evolution. The Plant Cell, 16(7), 1679-1691. doi:10.1105/tpc.021410 | es_ES |
dc.description.references | Blanc, G., & Wolfe, K. H. (2004). Widespread Paleopolyploidy in Model Plant Species Inferred from Age Distributions of Duplicate Genes. The Plant Cell, 16(7), 1667-1678. doi:10.1105/tpc.021345 | es_ES |
dc.description.references | Bowers, J. E., Chapman, B. A., Rong, J., & Paterson, A. H. (2003). Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature, 422(6930), 433-438. doi:10.1038/nature01521 | es_ES |
dc.description.references | Castresana, J. (2000). Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Molecular Biology and Evolution, 17(4), 540-552. doi:10.1093/oxfordjournals.molbev.a026334 | es_ES |
dc.description.references | Conant, G. C., & Wolfe, K. H. (2008). Turning a hobby into a job: How duplicated genes find new functions. Nature Reviews Genetics, 9(12), 938-950. doi:10.1038/nrg2482 | es_ES |
dc.description.references | Cui, L. (2006). Widespread genome duplications throughout the history of flowering plants. Genome Research, 16(6), 738-749. doi:10.1101/gr.4825606 | es_ES |
dc.description.references | DEBODT, S., MAERE, S., & VANDEPEER, Y. (2005). Genome duplication and the origin of angiosperms. Trends in Ecology & Evolution, 20(11), 591-597. doi:10.1016/j.tree.2005.07.008 | es_ES |
dc.description.references | Dos Reis, M., & Wernisch, L. (2008). Estimating Translational Selection in Eukaryotic Genomes. Molecular Biology and Evolution, 26(2), 451-461. doi:10.1093/molbev/msn272 | es_ES |
dc.description.references | Drummond, D. A., Bloom, J. D., Adami, C., Wilke, C. O., & Arnold, F. H. (2005). Why highly expressed proteins evolve slowly. Proceedings of the National Academy of Sciences, 102(40), 14338-14343. doi:10.1073/pnas.0504070102 | es_ES |
dc.description.references | Drummond, D. A., & Wilke, C. O. (2008). Mistranslation-Induced Protein Misfolding as a Dominant Constraint on Coding-Sequence Evolution. Cell, 134(2), 341-352. doi:10.1016/j.cell.2008.05.042 | es_ES |
dc.description.references | Duret, L. (2002). Evolution of synonymous codon usage in metazoans. Current Opinion in Genetics & Development, 12(6), 640-649. doi:10.1016/s0959-437x(02)00353-2 | es_ES |
dc.description.references | Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. doi:10.1093/nar/gkh340 | es_ES |
dc.description.references | Francino, M. P. (2005). An adaptive radiation model for the origin of new gene functions. Nature Genetics, 37(6), 573-578. doi:10.1038/ng1579 | es_ES |
dc.description.references | Freeling, M. (2006). Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Research, 16(7), 805-814. doi:10.1101/gr.3681406 | es_ES |
dc.description.references | Ganko, E. W., Meyers, B. C., & Vision, T. J. (2007). Divergence in Expression between Duplicated Genes in Arabidopsis. Molecular Biology and Evolution, 24(10), 2298-2309. doi:10.1093/molbev/msm158 | es_ES |
dc.description.references | Geisler-Lee, J., O’Toole, N., Ammar, R., Provart, N. J., Millar, A. H., & Geisler, M. (2007). A Predicted Interactome for Arabidopsis. Plant Physiology, 145(2), 317-329. doi:10.1104/pp.107.103465 | es_ES |
dc.description.references | Gu, Z., Steinmetz, L. M., Gu, X., Scharfe, C., Davis, R. W., & Li, W.-H. (2003). Role of duplicate genes in genetic robustness against null mutations. Nature, 421(6918), 63-66. doi:10.1038/nature01198 | es_ES |
dc.description.references | Hakes, L., Pinney, J. W., Lovell, S. C., Oliver, S. G., & Robertson, D. L. (2007). All duplicates are not equal: the difference between small-scale and genome duplication. Genome Biology, 8(10), R209. doi:10.1186/gb-2007-8-10-r209 | es_ES |
dc.description.references | He, X., & Zhang, J. (2005). Rapid Subfunctionalization Accompanied by Prolonged and Substantial Neofunctionalization in Duplicate Gene Evolution. Genetics, 169(2), 1157-1164. doi:10.1534/genetics.104.037051 | es_ES |
dc.description.references | Innan, H., & Kondrashov, F. (2010). The evolution of gene duplications: classifying and distinguishing between models. Nature Reviews Genetics, 11(2), 97-108. doi:10.1038/nrg2689 | es_ES |
dc.description.references | Jurka, J., Kapitonov, V. V., Pavlicek, A., Klonowski, P., Kohany, O., & Walichiewicz, J. (2005). Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research, 110(1-4), 462-467. doi:10.1159/000084979 | es_ES |
dc.description.references | Li, W.-H., Gu, Z., Wang, H., & Nekrutenko, A. (2001). Evolutionary analyses of the human genome. Nature, 409(6822), 847-849. doi:10.1038/35057039 | es_ES |
dc.description.references | Lynch, M. (2000). The Evolutionary Fate and Consequences of Duplicate Genes. Science, 290(5494), 1151-1155. doi:10.1126/science.290.5494.1151 | es_ES |
dc.description.references | Maere, S., De Bodt, S., Raes, J., Casneuf, T., Van Montagu, M., Kuiper, M., & Van de Peer, Y. (2005). Modeling gene and genome duplications in eukaryotes. Proceedings of the National Academy of Sciences, 102(15), 5454-5459. doi:10.1073/pnas.0501102102 | es_ES |
dc.description.references | Moore, R. C., & Purugganan, M. D. (2005). The evolutionary dynamics of plant duplicate genes. Current Opinion in Plant Biology, 8(2), 122-128. doi:10.1016/j.pbi.2004.12.001 | es_ES |
dc.description.references | Ohno, S. (1970). Evolution by Gene Duplication. doi:10.1007/978-3-642-86659-3 | es_ES |
dc.description.references | OHTA, T. (1973). Slightly Deleterious Mutant Substitutions in Evolution. Nature, 246(5428), 96-98. doi:10.1038/246096a0 | es_ES |
dc.description.references | Papp, B., Pál, C., & Hurst, L. D. (2003). Dosage sensitivity and the evolution of gene families in yeast. Nature, 424(6945), 194-197. doi:10.1038/nature01771 | es_ES |
dc.description.references | Proost, S., Van Bel, M., Sterck, L., Billiau, K., Van Parys, T., Van de Peer, Y., & Vandepoele, K. (2009). PLAZA: A Comparative Genomics Resource to Study Gene and Genome Evolution in Plants. The Plant Cell, 21(12), 3718-3731. doi:10.1105/tpc.109.071506 | es_ES |
dc.description.references | Rensing, S. A., Ick, J., Fawcett, J. A., Lang, D., Zimmer, A., Van de Peer, Y., & Reski, R. (2007). An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evolutionary Biology, 7(1), 130. doi:10.1186/1471-2148-7-130 | es_ES |
dc.description.references | Rensing, S. A., Lang, D., Zimmer, A. D., Terry, A., Salamov, A., Shapiro, H., … Kamisugi, Y. (2007). The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science, 319(5859), 64-69. doi:10.1126/science.1150646 | es_ES |
dc.description.references | Sharp, P. M., & Li, W.-H. (1987). The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research, 15(3), 1281-1295. doi:10.1093/nar/15.3.1281 | es_ES |
dc.description.references | Simillion, C., Vandepoele, K., Van Montagu, M. C. E., Zabeau, M., & Van de Peer, Y. (2002). The hidden duplication past of Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 99(21), 13627-13632. doi:10.1073/pnas.212522399 | es_ES |
dc.description.references | Sterck, L., Rombauts, S., Jansson, S., Sterky, F., Rouzé, P., & Van de Peer, Y. (2005). EST data suggest that poplar is an ancient polyploid. New Phytologist, 167(1), 165-170. doi:10.1111/j.1469-8137.2005.01378.x | es_ES |
dc.description.references | Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. doi:10.1093/nar/22.22.4673 | es_ES |
dc.description.references | Vision, T. J., Brown, D. G., & Tanksley, S. D. (2000). The Origins of Genomic Duplications in Arabidopsis. Science, 290(5499), 2114-2117. doi:10.1126/science.290.5499.2114 | es_ES |
dc.description.references | Xia, X. (2007). An Improved Implementation of Codon Adaptation Index. Evolutionary Bioinformatics, 3, 117693430700300. doi:10.1177/117693430700300028 | es_ES |
dc.description.references | Yang, L., & Gaut, B. S. (2011). Factors that Contribute to Variation in Evolutionary Rate among Arabidopsis Genes. Molecular Biology and Evolution, 28(8), 2359-2369. doi:10.1093/molbev/msr058 | es_ES |
dc.description.references | Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. doi:10.1093/molbev/msm088 | es_ES |
dc.description.references | Yang, Z., & Nielsen, R. (2002). Codon-Substitution Models for Detecting Molecular Adaptation at Individual Sites Along Specific Lineages. Molecular Biology and Evolution, 19(6), 908-917. doi:10.1093/oxfordjournals.molbev.a004148 | es_ES |
dc.description.references | Yang, Z., & Nielsen, R. (2008). Mutation-Selection Models of Codon Substitution and Their Use to Estimate Selective Strengths on Codon Usage. Molecular Biology and Evolution, 25(3), 568-579. doi:10.1093/molbev/msm284 | es_ES |
dc.description.references | Zhang, J. (2003). Evolution by gene duplication: an update. Trends in Ecology & Evolution, 18(6), 292-298. doi:10.1016/s0169-5347(03)00033-8 | es_ES |
dc.description.references | Zhang, J. (2005). Evaluation of an Improved Branch-Site Likelihood Method for Detecting Positive Selection at the Molecular Level. Molecular Biology and Evolution, 22(12), 2472-2479. doi:10.1093/molbev/msi237 | es_ES |