- -

Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications

Mostrar el registro completo del ítem

Carretero Paulet, L.; Fares Riaño, MA. (2012). Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications. Molecular Biology and Evolution. 29(11):3541-3551. https://doi.org/10.1093/molbev/mss162

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/85098

Ficheros en el ítem

Metadatos del ítem

Título: Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications
Autor: Carretero Paulet, Lorenzo Fares Riaño, Mario Ali
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Gene duplicates are a major source of evolutionary novelties in the form of new or specialized functions and play a key role in speciation. Gene duplicates are generated through whole genome duplications (WGD) or ...[+]
Palabras clave: Gene duplication , Functional specialization , Whole genome duplication , Small-scale genome duplication
Derechos de uso: Reserva de todos los derechos
Fuente:
Molecular Biology and Evolution. (issn: 0737-4038 )
DOI: 10.1093/molbev/mss162
Editorial:
Oxford University Press (OUP)
Versión del editor: http://doi.org/10.1093/molbev/mss162
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//BFU2009-12022/ES/Impacto De La Duplicacion Genomica En La Innovacion Y Geometria Funcional De Arabidopsis Thaliana/
info:eu-repo/grantAgreement/SFI/SFI Research Frontiers Programme (RFP)/10%2FRFP%2FGEN2685/IE/Understanding the Role of Heat-Shock Proteins in Evolutionary Innovation/
Agradecimientos:
This work has been performed making extensive use of PERL scripts and Bioperl and R packages. The authors thank the Bioperl community for continuous support. They are especially grateful to Ken Wolfe, Santiago F Elena, ...[+]
Tipo: Artículo

References

Aharoni, A., Gaidukov, L., Khersonsky, O., Gould, S. M., Roodveldt, C., & Tawfik, D. S. (2004). The «evolvability» of promiscuous protein functions. Nature Genetics, 37(1), 73-76. doi:10.1038/ng1482

Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389

(2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408(6814), 796-815. doi:10.1038/35048692 [+]
Aharoni, A., Gaidukov, L., Khersonsky, O., Gould, S. M., Roodveldt, C., & Tawfik, D. S. (2004). The «evolvability» of promiscuous protein functions. Nature Genetics, 37(1), 73-76. doi:10.1038/ng1482

Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389

(2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408(6814), 796-815. doi:10.1038/35048692

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25-29. doi:10.1038/75556

Bielawski, J., & Yang, Z. (2004). A Maximum Likelihood Method for Detecting Functional Divergence at Individual Codon Sites, with Application to Gene Family Evolution. Journal of Molecular Evolution, 59(1). doi:10.1007/s00239-004-2597-8

Blanc, G. (2003). A Recent Polyploidy Superimposed on Older Large-Scale Duplications in the Arabidopsis Genome. Genome Research, 13(2), 137-144. doi:10.1101/gr.751803

Blanc, G., & Wolfe, K. H. (2004). Functional Divergence of Duplicated Genes Formed by Polyploidy during Arabidopsis Evolution. The Plant Cell, 16(7), 1679-1691. doi:10.1105/tpc.021410

Blanc, G., & Wolfe, K. H. (2004). Widespread Paleopolyploidy in Model Plant Species Inferred from Age Distributions of Duplicate Genes. The Plant Cell, 16(7), 1667-1678. doi:10.1105/tpc.021345

Bowers, J. E., Chapman, B. A., Rong, J., & Paterson, A. H. (2003). Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature, 422(6930), 433-438. doi:10.1038/nature01521

Castresana, J. (2000). Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Molecular Biology and Evolution, 17(4), 540-552. doi:10.1093/oxfordjournals.molbev.a026334

Conant, G. C., & Wolfe, K. H. (2008). Turning a hobby into a job: How duplicated genes find new functions. Nature Reviews Genetics, 9(12), 938-950. doi:10.1038/nrg2482

Cui, L. (2006). Widespread genome duplications throughout the history of flowering plants. Genome Research, 16(6), 738-749. doi:10.1101/gr.4825606

DEBODT, S., MAERE, S., & VANDEPEER, Y. (2005). Genome duplication and the origin of angiosperms. Trends in Ecology & Evolution, 20(11), 591-597. doi:10.1016/j.tree.2005.07.008

Dos Reis, M., & Wernisch, L. (2008). Estimating Translational Selection in Eukaryotic Genomes. Molecular Biology and Evolution, 26(2), 451-461. doi:10.1093/molbev/msn272

Drummond, D. A., Bloom, J. D., Adami, C., Wilke, C. O., & Arnold, F. H. (2005). Why highly expressed proteins evolve slowly. Proceedings of the National Academy of Sciences, 102(40), 14338-14343. doi:10.1073/pnas.0504070102

Drummond, D. A., & Wilke, C. O. (2008). Mistranslation-Induced Protein Misfolding as a Dominant Constraint on Coding-Sequence Evolution. Cell, 134(2), 341-352. doi:10.1016/j.cell.2008.05.042

Duret, L. (2002). Evolution of synonymous codon usage in metazoans. Current Opinion in Genetics & Development, 12(6), 640-649. doi:10.1016/s0959-437x(02)00353-2

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. doi:10.1093/nar/gkh340

Francino, M. P. (2005). An adaptive radiation model for the origin of new gene functions. Nature Genetics, 37(6), 573-578. doi:10.1038/ng1579

Freeling, M. (2006). Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Research, 16(7), 805-814. doi:10.1101/gr.3681406

Ganko, E. W., Meyers, B. C., & Vision, T. J. (2007). Divergence in Expression between Duplicated Genes in Arabidopsis. Molecular Biology and Evolution, 24(10), 2298-2309. doi:10.1093/molbev/msm158

Geisler-Lee, J., O’Toole, N., Ammar, R., Provart, N. J., Millar, A. H., & Geisler, M. (2007). A Predicted Interactome for Arabidopsis. Plant Physiology, 145(2), 317-329. doi:10.1104/pp.107.103465

Gu, Z., Steinmetz, L. M., Gu, X., Scharfe, C., Davis, R. W., & Li, W.-H. (2003). Role of duplicate genes in genetic robustness against null mutations. Nature, 421(6918), 63-66. doi:10.1038/nature01198

Hakes, L., Pinney, J. W., Lovell, S. C., Oliver, S. G., & Robertson, D. L. (2007). All duplicates are not equal: the difference between small-scale and genome duplication. Genome Biology, 8(10), R209. doi:10.1186/gb-2007-8-10-r209

He, X., & Zhang, J. (2005). Rapid Subfunctionalization Accompanied by Prolonged and Substantial Neofunctionalization in Duplicate Gene Evolution. Genetics, 169(2), 1157-1164. doi:10.1534/genetics.104.037051

Innan, H., & Kondrashov, F. (2010). The evolution of gene duplications: classifying and distinguishing between models. Nature Reviews Genetics, 11(2), 97-108. doi:10.1038/nrg2689

Jurka, J., Kapitonov, V. V., Pavlicek, A., Klonowski, P., Kohany, O., & Walichiewicz, J. (2005). Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research, 110(1-4), 462-467. doi:10.1159/000084979

Li, W.-H., Gu, Z., Wang, H., & Nekrutenko, A. (2001). Evolutionary analyses of the human genome. Nature, 409(6822), 847-849. doi:10.1038/35057039

Lynch, M. (2000). The Evolutionary Fate and Consequences of Duplicate Genes. Science, 290(5494), 1151-1155. doi:10.1126/science.290.5494.1151

Maere, S., De Bodt, S., Raes, J., Casneuf, T., Van Montagu, M., Kuiper, M., & Van de Peer, Y. (2005). Modeling gene and genome duplications in eukaryotes. Proceedings of the National Academy of Sciences, 102(15), 5454-5459. doi:10.1073/pnas.0501102102

Moore, R. C., & Purugganan, M. D. (2005). The evolutionary dynamics of plant duplicate genes. Current Opinion in Plant Biology, 8(2), 122-128. doi:10.1016/j.pbi.2004.12.001

Ohno, S. (1970). Evolution by Gene Duplication. doi:10.1007/978-3-642-86659-3

OHTA, T. (1973). Slightly Deleterious Mutant Substitutions in Evolution. Nature, 246(5428), 96-98. doi:10.1038/246096a0

Papp, B., Pál, C., & Hurst, L. D. (2003). Dosage sensitivity and the evolution of gene families in yeast. Nature, 424(6945), 194-197. doi:10.1038/nature01771

Proost, S., Van Bel, M., Sterck, L., Billiau, K., Van Parys, T., Van de Peer, Y., & Vandepoele, K. (2009). PLAZA: A Comparative Genomics Resource to Study Gene and Genome Evolution in Plants. The Plant Cell, 21(12), 3718-3731. doi:10.1105/tpc.109.071506

Rensing, S. A., Ick, J., Fawcett, J. A., Lang, D., Zimmer, A., Van de Peer, Y., & Reski, R. (2007). An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evolutionary Biology, 7(1), 130. doi:10.1186/1471-2148-7-130

Rensing, S. A., Lang, D., Zimmer, A. D., Terry, A., Salamov, A., Shapiro, H., … Kamisugi, Y. (2007). The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science, 319(5859), 64-69. doi:10.1126/science.1150646

Sharp, P. M., & Li, W.-H. (1987). The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research, 15(3), 1281-1295. doi:10.1093/nar/15.3.1281

Simillion, C., Vandepoele, K., Van Montagu, M. C. E., Zabeau, M., & Van de Peer, Y. (2002). The hidden duplication past of Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 99(21), 13627-13632. doi:10.1073/pnas.212522399

Sterck, L., Rombauts, S., Jansson, S., Sterky, F., Rouzé, P., & Van de Peer, Y. (2005). EST data suggest that poplar is an ancient polyploid. New Phytologist, 167(1), 165-170. doi:10.1111/j.1469-8137.2005.01378.x

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. doi:10.1093/nar/22.22.4673

Vision, T. J., Brown, D. G., & Tanksley, S. D. (2000). The Origins of Genomic Duplications in Arabidopsis. Science, 290(5499), 2114-2117. doi:10.1126/science.290.5499.2114

Xia, X. (2007). An Improved Implementation of Codon Adaptation Index. Evolutionary Bioinformatics, 3, 117693430700300. doi:10.1177/117693430700300028

Yang, L., & Gaut, B. S. (2011). Factors that Contribute to Variation in Evolutionary Rate among Arabidopsis Genes. Molecular Biology and Evolution, 28(8), 2359-2369. doi:10.1093/molbev/msr058

Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. doi:10.1093/molbev/msm088

Yang, Z., & Nielsen, R. (2002). Codon-Substitution Models for Detecting Molecular Adaptation at Individual Sites Along Specific Lineages. Molecular Biology and Evolution, 19(6), 908-917. doi:10.1093/oxfordjournals.molbev.a004148

Yang, Z., & Nielsen, R. (2008). Mutation-Selection Models of Codon Substitution and Their Use to Estimate Selective Strengths on Codon Usage. Molecular Biology and Evolution, 25(3), 568-579. doi:10.1093/molbev/msm284

Zhang, J. (2003). Evolution by gene duplication: an update. Trends in Ecology & Evolution, 18(6), 292-298. doi:10.1016/s0169-5347(03)00033-8

Zhang, J. (2005). Evaluation of an Improved Branch-Site Likelihood Method for Detecting Positive Selection at the Molecular Level. Molecular Biology and Evolution, 22(12), 2472-2479. doi:10.1093/molbev/msi237

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem