- -

From microscopic insights of H2 adsorption to uptake estimations in MOFs

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


From microscopic insights of H2 adsorption to uptake estimations in MOFs

Show full item record

Gomez, DA.; Sastre Navarro, GI. (2011). From microscopic insights of H2 adsorption to uptake estimations in MOFs. Physical Chemistry Chemical Physics. 13(37):16558-16568. doi:10.1039/C1CP21865D

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/85101

Files in this item

Item Metadata

Title: From microscopic insights of H2 adsorption to uptake estimations in MOFs
Author: Gomez, Diego A. Sastre Navarro, German Ignacio
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
[EN] The adsorption of hydrogen in MOFs takes place mainly close to the inorganic secondary building unit (IBU). The adsorption capacities on MIL-88, UiO-66, MIL-47 and MFU-1 were investigated. Quantum chemical calculations ...[+]
Subjects: metal-organic frameworks , Hydrogen-storage materials , Secondary building units , Ab initio , Basis-set , Sites , Design , Dispersion , Strength , Elements
Copyrigths: Cerrado
Physical Chemistry Chemical Physics. (issn: 1463-9076 )
DOI: 10.1039/C1CP21865D
Royal Society of Chemistry
Publisher version: http://doi.org/10.1039/c1cp21865d
Project ID:
The authors thank Dr Kaido Sillar for useful comments about thermal contributions to the estimated adsorption energies. We thank Ministerio de Ciencia e Innovacion of Spain for funding through projects MAT2007-64682 and ...[+]
Type: Artículo


Xiao, B., & Yuan, Q. (2009). Nanoporous metal organic framework materials for hydrogen storage. Particuology, 7(2), 129-140. doi:10.1016/j.partic.2009.01.006

Schlapbach, L., & Züttel, A. (2001). Hydrogen-storage materials for mobile applications. Nature, 414(6861), 353-358. doi:10.1038/35104634

Rowsell, J. L. C., Millward, A. R., Park, K. S., & Yaghi, O. M. (2004). Hydrogen Sorption in Functionalized Metal−Organic Frameworks. Journal of the American Chemical Society, 126(18), 5666-5667. doi:10.1021/ja049408c [+]
Xiao, B., & Yuan, Q. (2009). Nanoporous metal organic framework materials for hydrogen storage. Particuology, 7(2), 129-140. doi:10.1016/j.partic.2009.01.006

Schlapbach, L., & Züttel, A. (2001). Hydrogen-storage materials for mobile applications. Nature, 414(6861), 353-358. doi:10.1038/35104634

Rowsell, J. L. C., Millward, A. R., Park, K. S., & Yaghi, O. M. (2004). Hydrogen Sorption in Functionalized Metal−Organic Frameworks. Journal of the American Chemical Society, 126(18), 5666-5667. doi:10.1021/ja049408c

Hirscher, M., Panella, B., & Schmitz, B. (2010). Metal-organic frameworks for hydrogen storage. Microporous and Mesoporous Materials, 129(3), 335-339. doi:10.1016/j.micromeso.2009.06.005

Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-714. doi:10.1038/nature01650

Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O’Keeffe, M., & Yaghi, O. M. (2001). Modular Chemistry:  Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks. Accounts of Chemical Research, 34(4), 319-330. doi:10.1021/ar000034b

Tranchemontagne, D. J., Mendoza-Cortés, J. L., O’Keeffe, M., & Yaghi, O. M. (2009). Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chemical Society Reviews, 38(5), 1257. doi:10.1039/b817735j

Hu, Y. H., & Zhang, L. (2010). Hydrogen Storage in Metal-Organic Frameworks. Advanced Materials, 22(20), E117-E130. doi:10.1002/adma.200902096

Zhao, D., Yuan, D., & Zhou, H.-C. (2008). The current status of hydrogen storage in metal–organic frameworks. Energy & Environmental Science, 1(2), 222. doi:10.1039/b808322n

Zou, R., Abdel-Fattah, A. I., Xu, H., Zhao, Y., & Hickmott, D. D. (2010). Storage and separation applications of nanoporous metal–organic frameworks. CrystEngComm, 12(5), 1337-1353. doi:10.1039/b909643b

Ma, S., & Zhou, H.-C. (2010). Gas storage in porous metal–organic frameworks for clean energy applications. Chem. Commun., 46(1), 44-53. doi:10.1039/b916295j

Sastre, G. (2010). Hydrogen physisorption in metal–organic frameworks: concepts and quantum chemical calculations. Theoretical Chemistry Accounts, 127(4), 259-270. doi:10.1007/s00214-010-0766-y

Tafipolsky, M., Amirjalayer, S., & Schmid, R. (2010). Atomistic theoretical models for nanoporous hybrid materials. Microporous and Mesoporous Materials, 129(3), 304-318. doi:10.1016/j.micromeso.2009.07.006

Lin, X., Jia, J., Zhao, X., Thomas, K. M., Blake, A. J., Walker, G. S., … Schröder, M. (2006). High H2 Adsorption by Coordination-Framework Materials. Angewandte Chemie International Edition, 45(44), 7358-7364. doi:10.1002/anie.200601991

Lin, X., Telepeni, I., Blake, A. J., Dailly, A., Brown, C. M., Simmons, J. M., … Schröder, M. (2009). High Capacity Hydrogen Adsorption in Cu(II) Tetracarboxylate Framework Materials: The Role of Pore Size, Ligand Functionalization, and Exposed Metal Sites. Journal of the American Chemical Society, 131(6), 2159-2171. doi:10.1021/ja806624j

Frost, H., & Snurr, R. Q. (2007). Design Requirements for Metal-Organic Frameworks as Hydrogen Storage Materials. The Journal of Physical Chemistry C, 111(50), 18794-18803. doi:10.1021/jp076657p

Gomez, D. A., Combariza, A. F., & Sastre, G. (2009). Quantum-chemistry calculations of hydrogen adsorption in MOF-5. Physical Chemistry Chemical Physics, 11(40), 9250. doi:10.1039/b909021e

Liu, Y., Kabbour, H., Brown, C. M., Neumann, D. A., & Ahn, C. C. (2008). Increasing the Density of Adsorbed Hydrogen with Coordinatively Unsaturated Metal Centers in Metal−Organic Frameworks. Langmuir, 24(9), 4772-4777. doi:10.1021/la703864a

Yildirim, T., & Hartman, M. (2005). Direct Observation of Hydrogen Adsorption Sites and Nanocage Formation in Metal-Organic Frameworks. Physical Review Letters, 95(21). doi:10.1103/physrevlett.95.215504

Kuc, A., Heine, T., Seifert, G., & Duarte, H. A. (2008). On the nature of the interaction between H2 and metal-organic frameworks. Theoretical Chemistry Accounts, 120(4-6), 543-550. doi:10.1007/s00214-008-0439-2

Zhang, L., Wang, Q., Liu, Y.-C., Wu, T., Chen, D., & Wang, X.-P. (2009). Interactions of hydrogen molecules with metal-organic frameworks at adsorption sites. Chemical Physics Letters, 469(4-6), 261-265. doi:10.1016/j.cplett.2009.01.003

Lee, T. B., Kim, D., Jung, D. H., Choi, S. B., Yoon, J. H., Kim, J., … Choi, S.-H. (2007). Understanding the mechanism of hydrogen adsorption into metal organic frameworks. Catalysis Today, 120(3-4), 330-335. doi:10.1016/j.cattod.2006.09.030

Srepusharawoot, P., Araújo, C. M., Blomqvist, A., Scheicher, R. H., & Ahuja, R. (2008). A comparative investigation of H2 adsorption strength in Cd- and Zn-based metal organic framework-5. The Journal of Chemical Physics, 129(16), 164104. doi:10.1063/1.2997377

Sillar, K., Hofmann, A., & Sauer, J. (2009). Ab Initio Study of Hydrogen Adsorption in MOF-5. Journal of the American Chemical Society, 131(11), 4143-4150. doi:10.1021/ja8099079

Cabria, I., López, M. J., & Alonso, J. A. (2008). Shape of the hydrogen adsorption regions of MOF-5 and its impact on the hydrogen storage capacity. Physical Review B, 78(20). doi:10.1103/physrevb.78.205432

Bordiga, S., Vitillo, J. G., Ricchiardi, G., Regli, L., Cocina, D., Zecchina, A., … Lillerud, K. P. (2005). Interaction of Hydrogen with MOF-5. The Journal of Physical Chemistry B, 109(39), 18237-18242. doi:10.1021/jp052611p

Schmitz, B., Müller, U., Trukhan, N., Schubert, M., Férey, G., & Hirscher, M. (2008). Heat of Adsorption for Hydrogen in Microporous High-Surface-Area Materials. ChemPhysChem, 9(15), 2181-2184. doi:10.1002/cphc.200800463

Mulder, F. M., Dingemans, T. J., Schimmel, H. G., Ramirez-Cuesta, A. J., & Kearley, G. J. (2008). Hydrogen adsorption strength and sites in the metal organic framework MOF5: Comparing experiment and model calculations. Chemical Physics, 351(1-3), 72-76. doi:10.1016/j.chemphys.2008.03.034

Rowsell, J. L. C. (2005). Gas Adsorption Sites in a Large-Pore Metal-Organic Framework. Science, 309(5739), 1350-1354. doi:10.1126/science.1113247

Lochan, R. C., & Head-Gordon, M. (2006). Computational studies of molecular hydrogen binding affinities: The role of dispersion forces, electrostatics, and orbital interactions. Physical Chemistry Chemical Physics, 8(12), 1357. doi:10.1039/b515409j

Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953

Barthelet, K., Marrot, J., Riou, D., & Férey, G. (2002). A Breathing Hybrid Organic–Inorganic Solid with Very Large Pores and High Magnetic Characteristics. Angewandte Chemie International Edition, 41(2), 281. doi:10.1002/1521-3773(20020118)41:2<281::aid-anie281>3.0.co;2-y

Tonigold, M., Lu, Y., Bredenkötter, B., Rieger, B., Bahnmüller, S., Hitzbleck, J., … Volkmer, D. (2009). Heterogeneous Catalytic Oxidation by MFU-1: A Cobalt(II)-Containing Metal-Organic Framework. Angewandte Chemie International Edition, 48(41), 7546-7550. doi:10.1002/anie.200901241

Surblé, S., Serre, C., Mellot-Draznieks, C., Millange, F., & Férey, G. (2006). A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chem. Commun., (3), 284-286. doi:10.1039/b512169h

Bakhmutov, V. I., Berry, J. F., Cotton, F. A., Ibragimov, S., & Murillo, C. A. (2005). Non-trivial behavior of palladium(ii) acetate. Dalton Transactions, (11), 1989. doi:10.1039/b502122g

Møller, C., & Plesset, M. S. (1934). Note on an Approximation Treatment for Many-Electron Systems. Physical Review, 46(7), 618-622. doi:10.1103/physrev.46.618

Feyereisen, M., Fitzgerald, G., & Komornicki, A. (1993). Use of approximate integrals in ab initio theory. An application in MP2 energy calculations. Chemical Physics Letters, 208(5-6), 359-363. doi:10.1016/0009-2614(93)87156-w

Weigend, F., Häser, M., Patzelt, H., & Ahlrichs, R. (1998). RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. Chemical Physics Letters, 294(1-3), 143-152. doi:10.1016/s0009-2614(98)00862-8

Simon, S., Duran, M., & Dannenberg, J. J. (1996). How does basis set superposition error change the potential surfaces for hydrogen‐bonded dimers? The Journal of Chemical Physics, 105(24), 11024-11031. doi:10.1063/1.472902

Rassolov, V. A., Pople, J. A., Ratner, M. A., & Windus, T. L. (1998). 6-31G* basis set for atoms K through Zn. The Journal of Chemical Physics, 109(4), 1223-1229. doi:10.1063/1.476673

Chiodo, S., Russo, N., & Sicilia, E. (2006). LANL2DZ basis sets recontracted in the framework of density functional theory. The Journal of Chemical Physics, 125(10), 104107. doi:10.1063/1.2345197

Francl, M. M., Pietro, W. J., Hehre, W. J., Binkley, J. S., Gordon, M. S., DeFrees, D. J., & Pople, J. A. (1982). Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements. The Journal of Chemical Physics, 77(7), 3654-3665. doi:10.1063/1.444267

Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297. doi:10.1039/b508541a

Andrae, D., H�u�ermann, U., Dolg, M., Stoll, H., & Preu�, H. (1990). Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theoretica Chimica Acta, 77(2), 123-141. doi:10.1007/bf01114537

Zhou, W., Wu, H., & Yildirim, T. (2008). Enhanced H2Adsorption in Isostructural Metal−Organic Frameworks with Open Metal Sites: Strong Dependence of the Binding Strength on Metal Ions. Journal of the American Chemical Society, 130(46), 15268-15269. doi:10.1021/ja807023q

Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O’Keeffe, M., & Yaghi, O. M. (2005). Rod Packings and Metal−Organic Frameworks Constructed from Rod-Shaped Secondary Building Units. Journal of the American Chemical Society, 127(5), 1504-1518. doi:10.1021/ja045123o

Blanco-Rey, M., Wales, D. J., & Jenkins, S. J. (2009). Mechanisms for H2 Reduction on the PdO{101} Surface and the Pd{100}-(√5 × √5)R27°-O Surface Oxide. The Journal of Physical Chemistry C, 113(38), 16757-16765. doi:10.1021/jp904693t

Roques, J., Lacaze-Dufaure, C., & Mijoule, C. (2007). Dissociative Adsorption of Hydrogen and Oxygen on Palladium Clusters:  A Comparison with the (111) Infinite Surface. Journal of Chemical Theory and Computation, 3(3), 878-884. doi:10.1021/ct600370g

Kong, L., Román-Pérez, G., Soler, J. M., & Langreth, D. C. (2009). Energetics and Dynamics ofH2Adsorbed in a Nanoporous Material at Low Temperature. Physical Review Letters, 103(9). doi:10.1103/physrevlett.103.096103

Areán, C. O., Chavan, S., Cabello, C. P., Garrone, E., & Palomino, G. T. (2010). Thermodynamics of Hydrogen Adsorption on Metal-Organic Frameworks. ChemPhysChem, 11(15), 3237-3242. doi:10.1002/cphc.201000523

Bhatia, S. K., & Myers, A. L. (2006). Optimum Conditions for Adsorptive Storage. Langmuir, 22(4), 1688-1700. doi:10.1021/la0523816

Jhi, S.-H. (2007). A theoretical study of activated nanostructured materials for hydrogen storage. Catalysis Today, 120(3-4), 383-388. doi:10.1016/j.cattod.2006.09.025

Vitillo, J. G., Regli, L., Chavan, S., Ricchiardi, G., Spoto, G., Dietzel, P. D. C., … Zecchina, A. (2008). Role of Exposed Metal Sites in Hydrogen Storage in MOFs. Journal of the American Chemical Society, 130(26), 8386-8396. doi:10.1021/ja8007159

Kuc, A., Heine, T., Seifert, G., & Duarte, H. A. (2008). H2Adsorption in Metal-Organic Frameworks: Dispersion or Electrostatic Interactions? Chemistry - A European Journal, 14(22), 6597-6600. doi:10.1002/chem.200800878

Alkorta, I., Elguero, J., Solimannejad, M., & Grabowski, S. J. (2011). Dihydrogen Bonding vs Metal−σ Interaction in Complexes between H2and Metal Hydride. The Journal of Physical Chemistry A, 115(2), 201-210. doi:10.1021/jp1100544


This item appears in the following Collection(s)

Show full item record