- -

From microscopic insights of H2 adsorption to uptake estimations in MOFs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

From microscopic insights of H2 adsorption to uptake estimations in MOFs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gomez, Diego A. es_ES
dc.contributor.author Sastre Navarro, German Ignacio es_ES
dc.date.accessioned 2017-07-13T12:29:01Z
dc.date.available 2017-07-13T12:29:01Z
dc.date.issued 2011
dc.identifier.issn 1463-9076
dc.identifier.uri http://hdl.handle.net/10251/85101
dc.description.abstract [EN] The adsorption of hydrogen in MOFs takes place mainly close to the inorganic secondary building unit (IBU). The adsorption capacities on MIL-88, UiO-66, MIL-47 and MFU-1 were investigated. Quantum chemical calculations at the ab initio HF/MP2 theoretical level were employed to estimate the maximum uptake of H-2 molecules per metallic centre. Extrapolating the results on small clusters to the unit cell of each particular MOF, the H-2 uptakes (gravimetric and volumetric) were estimated. The loading of hydrogen per metal atom (H-2 molecules/M-atom) and the density of metal atoms (M-atoms angstrom(-3)) were defined as useful parameters to assess hydrogen storage properties and to estimate the optimum density that the material should have to be a good H-2 adsorbent. It was found that values above 3 H-2 molecules/M-atom and around 0.004 M-atoms angstrom(-3) for MOFs with densities around 0.7-1.0 g cm(-3) are required to reach the 2015 storage targets. es_ES
dc.description.sponsorship The authors thank Dr Kaido Sillar for useful comments about thermal contributions to the estimated adsorption energies. We thank Ministerio de Ciencia e Innovacion of Spain for funding through projects MAT2007-64682 and Consolider-Ingenio 2010 (MULTICAT). The authors thankfully acknowledge the computer resources (CaesarAugusta), technical expertise and assistance provided by the Barcelona Supercomputing Center, the Spanish Supercomputing Network (RES) and BIFI (Institute for Biocomputation and Physics of Complex Systems).
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject metal-organic frameworks es_ES
dc.subject Hydrogen-storage materials es_ES
dc.subject Secondary building units es_ES
dc.subject Ab initio es_ES
dc.subject Basis-set es_ES
dc.subject Sites es_ES
dc.subject Design es_ES
dc.subject Dispersion es_ES
dc.subject Strength es_ES
dc.subject Elements es_ES
dc.title From microscopic insights of H2 adsorption to uptake estimations in MOFs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C1CP21865D
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MAT2007-64682/ES/ADSORCION Y CATALISIS EN SOLIDOS POROSOS METAL-ORGANICOS POR METODOS QUIMICO-COMPUTACIONALES/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Gomez, DA.; Sastre Navarro, GI. (2011). From microscopic insights of H2 adsorption to uptake estimations in MOFs. Physical Chemistry Chemical Physics. 13(37):16558-16568. https://doi.org/10.1039/C1CP21865D es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1039/c1cp21865d es_ES
dc.description.upvformatpinicio 16558 es_ES
dc.description.upvformatpfin 16568 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 37 es_ES
dc.relation.senia 217083 es_ES
dc.identifier.pmid 21860867
dc.contributor.funder Ministerio de Educación y Ciencia
dc.description.references Xiao, B., & Yuan, Q. (2009). Nanoporous metal organic framework materials for hydrogen storage. Particuology, 7(2), 129-140. doi:10.1016/j.partic.2009.01.006 es_ES
dc.description.references Schlapbach, L., & Züttel, A. (2001). Hydrogen-storage materials for mobile applications. Nature, 414(6861), 353-358. doi:10.1038/35104634 es_ES
dc.description.references Rowsell, J. L. C., Millward, A. R., Park, K. S., & Yaghi, O. M. (2004). Hydrogen Sorption in Functionalized Metal−Organic Frameworks. Journal of the American Chemical Society, 126(18), 5666-5667. doi:10.1021/ja049408c es_ES
dc.description.references Hirscher, M., Panella, B., & Schmitz, B. (2010). Metal-organic frameworks for hydrogen storage. Microporous and Mesoporous Materials, 129(3), 335-339. doi:10.1016/j.micromeso.2009.06.005 es_ES
dc.description.references Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-714. doi:10.1038/nature01650 es_ES
dc.description.references Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O’Keeffe, M., & Yaghi, O. M. (2001). Modular Chemistry:  Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks. Accounts of Chemical Research, 34(4), 319-330. doi:10.1021/ar000034b es_ES
dc.description.references Tranchemontagne, D. J., Mendoza-Cortés, J. L., O’Keeffe, M., & Yaghi, O. M. (2009). Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chemical Society Reviews, 38(5), 1257. doi:10.1039/b817735j es_ES
dc.description.references Hu, Y. H., & Zhang, L. (2010). Hydrogen Storage in Metal-Organic Frameworks. Advanced Materials, 22(20), E117-E130. doi:10.1002/adma.200902096 es_ES
dc.description.references Zhao, D., Yuan, D., & Zhou, H.-C. (2008). The current status of hydrogen storage in metal–organic frameworks. Energy & Environmental Science, 1(2), 222. doi:10.1039/b808322n es_ES
dc.description.references Zou, R., Abdel-Fattah, A. I., Xu, H., Zhao, Y., & Hickmott, D. D. (2010). Storage and separation applications of nanoporous metal–organic frameworks. CrystEngComm, 12(5), 1337-1353. doi:10.1039/b909643b es_ES
dc.description.references Ma, S., & Zhou, H.-C. (2010). Gas storage in porous metal–organic frameworks for clean energy applications. Chem. Commun., 46(1), 44-53. doi:10.1039/b916295j es_ES
dc.description.references Sastre, G. (2010). Hydrogen physisorption in metal–organic frameworks: concepts and quantum chemical calculations. Theoretical Chemistry Accounts, 127(4), 259-270. doi:10.1007/s00214-010-0766-y es_ES
dc.description.references Tafipolsky, M., Amirjalayer, S., & Schmid, R. (2010). Atomistic theoretical models for nanoporous hybrid materials. Microporous and Mesoporous Materials, 129(3), 304-318. doi:10.1016/j.micromeso.2009.07.006 es_ES
dc.description.references Lin, X., Jia, J., Zhao, X., Thomas, K. M., Blake, A. J., Walker, G. S., … Schröder, M. (2006). High H2 Adsorption by Coordination-Framework Materials. Angewandte Chemie International Edition, 45(44), 7358-7364. doi:10.1002/anie.200601991 es_ES
dc.description.references Lin, X., Telepeni, I., Blake, A. J., Dailly, A., Brown, C. M., Simmons, J. M., … Schröder, M. (2009). High Capacity Hydrogen Adsorption in Cu(II) Tetracarboxylate Framework Materials: The Role of Pore Size, Ligand Functionalization, and Exposed Metal Sites. Journal of the American Chemical Society, 131(6), 2159-2171. doi:10.1021/ja806624j es_ES
dc.description.references Frost, H., & Snurr, R. Q. (2007). Design Requirements for Metal-Organic Frameworks as Hydrogen Storage Materials. The Journal of Physical Chemistry C, 111(50), 18794-18803. doi:10.1021/jp076657p es_ES
dc.description.references Gomez, D. A., Combariza, A. F., & Sastre, G. (2009). Quantum-chemistry calculations of hydrogen adsorption in MOF-5. Physical Chemistry Chemical Physics, 11(40), 9250. doi:10.1039/b909021e es_ES
dc.description.references Liu, Y., Kabbour, H., Brown, C. M., Neumann, D. A., & Ahn, C. C. (2008). Increasing the Density of Adsorbed Hydrogen with Coordinatively Unsaturated Metal Centers in Metal−Organic Frameworks. Langmuir, 24(9), 4772-4777. doi:10.1021/la703864a es_ES
dc.description.references Yildirim, T., & Hartman, M. (2005). Direct Observation of Hydrogen Adsorption Sites and Nanocage Formation in Metal-Organic Frameworks. Physical Review Letters, 95(21). doi:10.1103/physrevlett.95.215504 es_ES
dc.description.references Kuc, A., Heine, T., Seifert, G., & Duarte, H. A. (2008). On the nature of the interaction between H2 and metal-organic frameworks. Theoretical Chemistry Accounts, 120(4-6), 543-550. doi:10.1007/s00214-008-0439-2 es_ES
dc.description.references Zhang, L., Wang, Q., Liu, Y.-C., Wu, T., Chen, D., & Wang, X.-P. (2009). Interactions of hydrogen molecules with metal-organic frameworks at adsorption sites. Chemical Physics Letters, 469(4-6), 261-265. doi:10.1016/j.cplett.2009.01.003 es_ES
dc.description.references Lee, T. B., Kim, D., Jung, D. H., Choi, S. B., Yoon, J. H., Kim, J., … Choi, S.-H. (2007). Understanding the mechanism of hydrogen adsorption into metal organic frameworks. Catalysis Today, 120(3-4), 330-335. doi:10.1016/j.cattod.2006.09.030 es_ES
dc.description.references Srepusharawoot, P., Araújo, C. M., Blomqvist, A., Scheicher, R. H., & Ahuja, R. (2008). A comparative investigation of H2 adsorption strength in Cd- and Zn-based metal organic framework-5. The Journal of Chemical Physics, 129(16), 164104. doi:10.1063/1.2997377 es_ES
dc.description.references Sillar, K., Hofmann, A., & Sauer, J. (2009). Ab Initio Study of Hydrogen Adsorption in MOF-5. Journal of the American Chemical Society, 131(11), 4143-4150. doi:10.1021/ja8099079 es_ES
dc.description.references Cabria, I., López, M. J., & Alonso, J. A. (2008). Shape of the hydrogen adsorption regions of MOF-5 and its impact on the hydrogen storage capacity. Physical Review B, 78(20). doi:10.1103/physrevb.78.205432 es_ES
dc.description.references Bordiga, S., Vitillo, J. G., Ricchiardi, G., Regli, L., Cocina, D., Zecchina, A., … Lillerud, K. P. (2005). Interaction of Hydrogen with MOF-5. The Journal of Physical Chemistry B, 109(39), 18237-18242. doi:10.1021/jp052611p es_ES
dc.description.references Schmitz, B., Müller, U., Trukhan, N., Schubert, M., Férey, G., & Hirscher, M. (2008). Heat of Adsorption for Hydrogen in Microporous High-Surface-Area Materials. ChemPhysChem, 9(15), 2181-2184. doi:10.1002/cphc.200800463 es_ES
dc.description.references Mulder, F. M., Dingemans, T. J., Schimmel, H. G., Ramirez-Cuesta, A. J., & Kearley, G. J. (2008). Hydrogen adsorption strength and sites in the metal organic framework MOF5: Comparing experiment and model calculations. Chemical Physics, 351(1-3), 72-76. doi:10.1016/j.chemphys.2008.03.034 es_ES
dc.description.references Rowsell, J. L. C. (2005). Gas Adsorption Sites in a Large-Pore Metal-Organic Framework. Science, 309(5739), 1350-1354. doi:10.1126/science.1113247 es_ES
dc.description.references Lochan, R. C., & Head-Gordon, M. (2006). Computational studies of molecular hydrogen binding affinities: The role of dispersion forces, electrostatics, and orbital interactions. Physical Chemistry Chemical Physics, 8(12), 1357. doi:10.1039/b515409j es_ES
dc.description.references Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953 es_ES
dc.description.references Barthelet, K., Marrot, J., Riou, D., & Férey, G. (2002). A Breathing Hybrid Organic–Inorganic Solid with Very Large Pores and High Magnetic Characteristics. Angewandte Chemie International Edition, 41(2), 281. doi:10.1002/1521-3773(20020118)41:2<281::aid-anie281>3.0.co;2-y es_ES
dc.description.references Tonigold, M., Lu, Y., Bredenkötter, B., Rieger, B., Bahnmüller, S., Hitzbleck, J., … Volkmer, D. (2009). Heterogeneous Catalytic Oxidation by MFU-1: A Cobalt(II)-Containing Metal-Organic Framework. Angewandte Chemie International Edition, 48(41), 7546-7550. doi:10.1002/anie.200901241 es_ES
dc.description.references Surblé, S., Serre, C., Mellot-Draznieks, C., Millange, F., & Férey, G. (2006). A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chem. Commun., (3), 284-286. doi:10.1039/b512169h es_ES
dc.description.references Bakhmutov, V. I., Berry, J. F., Cotton, F. A., Ibragimov, S., & Murillo, C. A. (2005). Non-trivial behavior of palladium(ii) acetate. Dalton Transactions, (11), 1989. doi:10.1039/b502122g es_ES
dc.description.references Møller, C., & Plesset, M. S. (1934). Note on an Approximation Treatment for Many-Electron Systems. Physical Review, 46(7), 618-622. doi:10.1103/physrev.46.618 es_ES
dc.description.references Feyereisen, M., Fitzgerald, G., & Komornicki, A. (1993). Use of approximate integrals in ab initio theory. An application in MP2 energy calculations. Chemical Physics Letters, 208(5-6), 359-363. doi:10.1016/0009-2614(93)87156-w es_ES
dc.description.references Weigend, F., Häser, M., Patzelt, H., & Ahlrichs, R. (1998). RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. Chemical Physics Letters, 294(1-3), 143-152. doi:10.1016/s0009-2614(98)00862-8 es_ES
dc.description.references Simon, S., Duran, M., & Dannenberg, J. J. (1996). How does basis set superposition error change the potential surfaces for hydrogen‐bonded dimers? The Journal of Chemical Physics, 105(24), 11024-11031. doi:10.1063/1.472902 es_ES
dc.description.references Rassolov, V. A., Pople, J. A., Ratner, M. A., & Windus, T. L. (1998). 6-31G* basis set for atoms K through Zn. The Journal of Chemical Physics, 109(4), 1223-1229. doi:10.1063/1.476673 es_ES
dc.description.references Chiodo, S., Russo, N., & Sicilia, E. (2006). LANL2DZ basis sets recontracted in the framework of density functional theory. The Journal of Chemical Physics, 125(10), 104107. doi:10.1063/1.2345197 es_ES
dc.description.references Francl, M. M., Pietro, W. J., Hehre, W. J., Binkley, J. S., Gordon, M. S., DeFrees, D. J., & Pople, J. A. (1982). Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements. The Journal of Chemical Physics, 77(7), 3654-3665. doi:10.1063/1.444267 es_ES
dc.description.references Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297. doi:10.1039/b508541a es_ES
dc.description.references Andrae, D., H�u�ermann, U., Dolg, M., Stoll, H., & Preu�, H. (1990). Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theoretica Chimica Acta, 77(2), 123-141. doi:10.1007/bf01114537 es_ES
dc.description.references Zhou, W., Wu, H., & Yildirim, T. (2008). Enhanced H2Adsorption in Isostructural Metal−Organic Frameworks with Open Metal Sites: Strong Dependence of the Binding Strength on Metal Ions. Journal of the American Chemical Society, 130(46), 15268-15269. doi:10.1021/ja807023q es_ES
dc.description.references Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O’Keeffe, M., & Yaghi, O. M. (2005). Rod Packings and Metal−Organic Frameworks Constructed from Rod-Shaped Secondary Building Units. Journal of the American Chemical Society, 127(5), 1504-1518. doi:10.1021/ja045123o es_ES
dc.description.references Blanco-Rey, M., Wales, D. J., & Jenkins, S. J. (2009). Mechanisms for H2 Reduction on the PdO{101} Surface and the Pd{100}-(√5 × √5)R27°-O Surface Oxide. The Journal of Physical Chemistry C, 113(38), 16757-16765. doi:10.1021/jp904693t es_ES
dc.description.references Roques, J., Lacaze-Dufaure, C., & Mijoule, C. (2007). Dissociative Adsorption of Hydrogen and Oxygen on Palladium Clusters:  A Comparison with the (111) Infinite Surface. Journal of Chemical Theory and Computation, 3(3), 878-884. doi:10.1021/ct600370g es_ES
dc.description.references Kong, L., Román-Pérez, G., Soler, J. M., & Langreth, D. C. (2009). Energetics and Dynamics ofH2Adsorbed in a Nanoporous Material at Low Temperature. Physical Review Letters, 103(9). doi:10.1103/physrevlett.103.096103 es_ES
dc.description.references Areán, C. O., Chavan, S., Cabello, C. P., Garrone, E., & Palomino, G. T. (2010). Thermodynamics of Hydrogen Adsorption on Metal-Organic Frameworks. ChemPhysChem, 11(15), 3237-3242. doi:10.1002/cphc.201000523 es_ES
dc.description.references Bhatia, S. K., & Myers, A. L. (2006). Optimum Conditions for Adsorptive Storage. Langmuir, 22(4), 1688-1700. doi:10.1021/la0523816 es_ES
dc.description.references Jhi, S.-H. (2007). A theoretical study of activated nanostructured materials for hydrogen storage. Catalysis Today, 120(3-4), 383-388. doi:10.1016/j.cattod.2006.09.025 es_ES
dc.description.references Vitillo, J. G., Regli, L., Chavan, S., Ricchiardi, G., Spoto, G., Dietzel, P. D. C., … Zecchina, A. (2008). Role of Exposed Metal Sites in Hydrogen Storage in MOFs. Journal of the American Chemical Society, 130(26), 8386-8396. doi:10.1021/ja8007159 es_ES
dc.description.references Kuc, A., Heine, T., Seifert, G., & Duarte, H. A. (2008). H2Adsorption in Metal-Organic Frameworks: Dispersion or Electrostatic Interactions? Chemistry - A European Journal, 14(22), 6597-6600. doi:10.1002/chem.200800878 es_ES
dc.description.references Alkorta, I., Elguero, J., Solimannejad, M., & Grabowski, S. J. (2011). Dihydrogen Bonding vs Metal−σ Interaction in Complexes between H2and Metal Hydride. The Journal of Physical Chemistry A, 115(2), 201-210. doi:10.1021/jp1100544 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem