Mostrar el registro sencillo del ítem
dc.contributor.author | Pera-Titus, Marc | es_ES |
dc.contributor.author | Palomino Roca, Miguel | es_ES |
dc.contributor.author | Valencia Valencia, Susana | es_ES |
dc.contributor.author | Rey Garcia, Fernando | es_ES |
dc.date.accessioned | 2017-07-17T10:48:09Z | |
dc.date.available | 2017-07-17T10:48:09Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1463-9076 | |
dc.identifier.uri | http://hdl.handle.net/10251/85254 | |
dc.description.abstract | [EN] Fully dehydrated and partially sodium-cesium containing RHO zeolite (Na,Cs-RHO) shows a genuine inflection in the CO2 isotherms in the temperature range 293-333 K that can be attributed to a sorbate-induced framework deformation from an acentric (A) to a centric (C) phase due to a partial cation rearrangement. This peculiar sorption pattern can be captured by the formulation of thermodynamic isotherms, providing a direct enthalpic and entropic signature of the CO2 adsorption-desorption process during deformation. Using this formulation, the energy barrier between the acentric and centric phases for CO2 adsorption-desorption was estimated in the range 4.7-9.6 J g(-1) of solid (15-32 kJ mol(-1)), reflecting a higher CO2 affinity for the acentric phase, whereas the elastic energy involved during framework distortion was estimated in the range 6-12 J g(-1) of solid (19-39 kJ mol(-1)) with a relative maximum at 303 K and showing a dominant entropic contribution. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Physical Chemistry Chemical Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | RHO zeolite | es_ES |
dc.subject | CO2 adsorption | es_ES |
dc.subject | Thermodynamic isotherms | es_ES |
dc.subject | Phase transformation | es_ES |
dc.subject | Zeolite | es_ES |
dc.subject | Adsorption | es_ES |
dc.title | Thermodynamic analysis of framework deformation in Na,Cs-RHO zeolite upon CO2 adsorption | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/C4CP03409K | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Pera-Titus, M.; Palomino Roca, M.; Valencia Valencia, S.; Rey Garcia, F. (2014). Thermodynamic analysis of framework deformation in Na,Cs-RHO zeolite upon CO2 adsorption. Physical Chemistry Chemical Physics. 16(44):24391-24400. doi:10.1039/C4CP03409K | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1039/c4cp03409k | es_ES |
dc.description.upvformatpinicio | 24391 | es_ES |
dc.description.upvformatpfin | 24400 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 44 | es_ES |
dc.relation.senia | 276454 | es_ES |
dc.identifier.eissn | 1463-9084 | |
dc.identifier.pmid | 25300941 | |
dc.description.references | Kapko, V., Dawson, C., Treacy, M. M. J., & Thorpe, M. F. (2010). Flexibility of ideal zeolite frameworks. Physical Chemistry Chemical Physics, 12(30), 8531. doi:10.1039/c003977b | es_ES |
dc.description.references | Park, S. H., Große Kunstleve, R.-W., Graetsch, H., & Gies, H. (1997). The thermal expansion of the zeolites MFI, AFI, DOH, DDR, and MTN in their calcined and as synthesized forms. Progress in Zeolite and Microporous Materials, Preceedings of the 11th International Zeolite Conference, 1989-1994. doi:10.1016/s0167-2991(97)80664-7 | es_ES |
dc.description.references | Marinkovic, B. A., Jardim, P. M., Saavedra, A., Lau, L. Y., Baehtz, C., de Avillez, R. R., & Rizzo, F. (2004). Negative thermal expansion in hydrated HZSM-5 orthorhombic zeolite. Microporous and Mesoporous Materials, 71(1-3), 117-124. doi:10.1016/j.micromeso.2004.03.023 | es_ES |
dc.description.references | Bhange, D. S., & Ramaswamy, V. (2006). Negative thermal expansion in silicalite-1 and zirconium silicalite-1 having MFI structure. Materials Research Bulletin, 41(7), 1392-1402. doi:10.1016/j.materresbull.2005.12.002 | es_ES |
dc.description.references | Cruciani, G. (2006). Zeolites upon heating: Factors governing their thermal stability and structural changes. Journal of Physics and Chemistry of Solids, 67(9-10), 1973-1994. doi:10.1016/j.jpcs.2006.05.057 | es_ES |
dc.description.references | Bhange, D. S., & Ramaswamy, V. (2007). High temperature thermal expansion behavior of silicalite-1 molecular sieve: in situ HTXRD study. Microporous and Mesoporous Materials, 103(1-3), 235-242. doi:10.1016/j.micromeso.2007.02.013 | es_ES |
dc.description.references | Krokidas, P. G., Nikolakis, V., & Burganos, V. N. (2012). Heating and sorption effects on silicalite-1 unit cell size and geometry. Microporous and Mesoporous Materials, 155, 65-70. doi:10.1016/j.micromeso.2011.12.052 | es_ES |
dc.description.references | Carey, T., Corma, A., Rey, F., Tang, C. C., Hriljac, J. A., & Anderson, P. A. (2012). The effect of extra framework species on the intrinsic negative thermal expansion property of zeolites with the LTA topology. Chemical Communications, 48(47), 5829. doi:10.1039/c2cc30582h | es_ES |
dc.description.references | Carey, T., Tang, C. C., Hriljac, J. A., & Anderson, P. A. (2014). Chemical Control of Thermal Expansion in Cation-Exchanged Zeolite A. Chemistry of Materials, 26(4), 1561-1566. doi:10.1021/cm403312q | es_ES |
dc.description.references | Beauvais, C., Boutin, A., & Fuchs, A. H. (2004). A Numerical Evidence for Nonframework Cation Redistribution Upon Water Adsorption in Faujasite Zeolite. ChemPhysChem, 5(11), 1791-1793. doi:10.1002/cphc.200400195 | es_ES |
dc.description.references | Beauvais, C., Boutin, A., & Fuchs, A. H. (2005). Adsorption of water in zeolite sodium-faujasite. Comptes Rendus Chimie, 8(3-4), 485-490. doi:10.1016/j.crci.2004.11.011 | es_ES |
dc.description.references | Di Lella, A., Desbiens, N., Boutin, A., Demachy, I., Ungerer, P., Bellat, J.-P., & Fuchs, A. H. (2006). Molecular simulation studies of water physisorption in zeolites. Physical Chemistry Chemical Physics, 8(46), 5396. doi:10.1039/b610621h | es_ES |
dc.description.references | Jeffroy, M., Boutin, A., & Fuchs, A. H. (2011). Understanding the Equilibrium Ion Exchange Properties in Faujasite Zeolite from Monte Carlo Simulations. The Journal of Physical Chemistry B, 115(50), 15059-15066. doi:10.1021/jp209067n | es_ES |
dc.description.references | Plant, D. F., Maurin, G., Jobic, H., & Llewellyn, P. L. (2006). Molecular Dynamics Simulation of the Cation Motion upon Adsorption of CO2in Faujasite Zeolite Systems. The Journal of Physical Chemistry B, 110(29), 14372-14378. doi:10.1021/jp062381u | es_ES |
dc.description.references | ROBSON, H. E., SHOEMAKER, D. P., OGILVIE, R. A., & MANOR, P. C. (1973). Synthesis and Crystal Structure of Zeolite Rho—A New Zeolite Related to Linde Type A. Molecular Sieves, 106-115. doi:10.1021/ba-1973-0121.ch009 | es_ES |
dc.description.references | Corbin, D. R., Abrams, L., Jones, G. A., Eddy, M. M., Harrison, W. T. A., Stucky, G. D., & Cox, D. E. (1990). Flexibility of the zeolite RHO framework: in situ x-ray and neutron powder structural characterization of divalent cation-exchanged zeolite RHO. Journal of the American Chemical Society, 112(12), 4821-4830. doi:10.1021/ja00168a029 | es_ES |
dc.description.references | Lapshin, A. E., & Golubeva, O. Y. (2013). Distribution of extra-framework cations and water molecules in synthetic high-silica (Na, Cs)-rho-zeolite. Glass Physics and Chemistry, 39(4), 420-424. doi:10.1134/s1087659613040135 | es_ES |
dc.description.references | Parise, J. B., & Prince, E. (1983). The structure of cesium-exchanged zeolite-RhO at 293K and 493K determined from high resolution neutron powder data. Materials Research Bulletin, 18(7), 841-852. doi:10.1016/0025-5408(83)90062-4 | es_ES |
dc.description.references | McCusker, L. B. (1984). Crystal structures of the ammonium and hydrogen forms of zeolite rho. Zeolites, 4(1), 51-55. doi:10.1016/0144-2449(84)90073-3 | es_ES |
dc.description.references | Fischer, R. X., Baur, W. H., Shannon, R. D., Staley, R. H., Abrams, L., Vega, A. J., & Jorgensen, J. D. (1988). Neutron powder diffraction study and physical characterization of zeolite D-Rho shallow-bed calcined in steam at 773 K. Acta Crystallographica Section B Structural Science, 44(4), 321-334. doi:10.1107/s0108768188000916 | es_ES |
dc.description.references | Lozinska, M. M., Mangano, E., Mowat, J. P. S., Shepherd, A. M., Howe, R. F., Thompson, S. P., … Wright, P. A. (2012). Understanding Carbon Dioxide Adsorption on Univalent Cation Forms of the Flexible Zeolite Rho at Conditions Relevant to Carbon Capture from Flue Gases. Journal of the American Chemical Society, 134(42), 17628-17642. doi:10.1021/ja3070864 | es_ES |
dc.description.references | Parise, J. B., Gier, T. E., Corbin, D. R., Abrams, L., Jorgensen, J. D., & Prince, E. (1984). Flexibility of the framework of zeolite Rho. Structural variation from 11 to 573 K. A study using neutron powder diffraction data. The Journal of Physical Chemistry, 88(11), 2303-2307. doi:10.1021/j150655a024 | es_ES |
dc.description.references | Parise, J. B., & Cox, D. E. (1984). Structural changes occurring upon dehydration of zeolite Rho. A study using neutron powder diffraction and distance-least-squares structural modeling. The Journal of Physical Chemistry, 88(8), 1635-1640. doi:10.1021/j150652a039 | es_ES |
dc.description.references | Bieniok, A., & Baur, W. H. (1991). A large volume contraction accompanies the low- to high-temperature phase transition of zeolite Sr-rho. Journal of Solid State Chemistry, 90(1), 173-177. doi:10.1016/0022-4596(91)90183-i | es_ES |
dc.description.references | Lee, Y., Hriljac, J. A., Vogt, T., Parise, J. B., Edmondson, M. J., Anderson, P. A., … Nagai, T. (2001). Phase Transition of Zeolite RHO at High-Pressure. Journal of the American Chemical Society, 123(34), 8418-8419. doi:10.1021/ja0161554 | es_ES |
dc.description.references | Reisner, B. A., Toby, B. H., Lee, Y., Parise, J. B., Larese, J. Z., Kahlenberg, V., … Corbin, D. R. (2000). Understanding negative thermal expansion and ‘trap door’ cation relocations in zeolite rho. Chemical Communications, (22), 2221-2222. doi:10.1039/b006929i | es_ES |
dc.description.references | Lee, Y., Reisner, B. A., Hanson, J. C., Jones, G. A., Parise, J. B., Corbin, D. R., … Larese, J. Z. (2001). New Insight into Cation Relocations within the Pores of Zeolite Rho: In Situ Synchrotron X-Ray and Neutron Powder Diffraction Studies of Pb- and Cd-Exchanged Rho. The Journal of Physical Chemistry B, 105(30), 7188-7199. doi:10.1021/jp0100349 | es_ES |
dc.description.references | Balestra, S. R. G., Gutiérrez-Sevillano, J. J., Merkling, P. J., Dubbeldam, D., & Calero, S. (2013). Simulation Study of Structural Changes in Zeolite RHO. The Journal of Physical Chemistry C, 117(22), 11592-11599. doi:10.1021/jp4026283 | es_ES |
dc.description.references | HRHO, I. (1988). Selective synthesis of dimethylamine over small-pore zeolites. Journal of Catalysis, 113(2), 367-382. doi:10.1016/0021-9517(88)90265-5 | es_ES |
dc.description.references | ABRAMS, L. (1990). Synthesis of dimethylamine by zeolite Rho: A rational basis for selectivity. Journal of Catalysis, 126(2), 610-618. doi:10.1016/0021-9517(90)90024-e | es_ES |
dc.description.references | Smith, M. L., Corbin, D. R., Abrams, L., & Dybowski, C. (1993). Flexibility of zeolite rho: xenon-129 NMR studies of entrapped xenon in cadmium-rho. The Journal of Physical Chemistry, 97(30), 7793-7795. doi:10.1021/j100132a001 | es_ES |
dc.description.references | Parise, J. B., Corbin, D. R., & Abrams, L. (1995). Structural changes upon sorption and desorption of Xe from Cd-exchanged zeolite rho: a real-time synchrotron X-ray powder diffraction study. Microporous Materials, 4(2-3), 99-110. doi:10.1016/0927-6513(94)00088-d | es_ES |
dc.description.references | Lee, Y., Vogt, T., Hriljac, J. A., & Parise, J. B. (2002). Discovery of a Rhombohedral Form of the Li-Exchanged Aluminogermanate Zeolite RHO and Its Pressure-, Temperature-, and Composition-Induced Phase Transitions. Chemistry of Materials, 14(8), 3501-3508. doi:10.1021/cm020257r | es_ES |
dc.description.references | Palomino, M., Corma, A., Jordá, J. L., Rey, F., & Valencia, S. (2012). Zeolite Rho: a highly selective adsorbent for CO2/CH4separation induced by a structural phase modification. Chem. Commun., 48(2), 215-217. doi:10.1039/c1cc16320e | es_ES |
dc.description.references | Lozinska, M. M., Mowat, J. P. S., Wright, P. A., Thompson, S. P., Jorda, J. L., Palomino, M., … Rey, F. (2014). Cation Gating and Relocation during the Highly Selective «Trapdoor» Adsorption of CO2on Univalent Cation Forms of Zeolite Rho. Chemistry of Materials, 26(6), 2052-2061. doi:10.1021/cm404028f | es_ES |
dc.description.references | Shang, J., Li, G., Singh, R., Gu, Q., Nairn, K. M., Bastow, T. J., … Webley, P. A. (2012). Discriminative Separation of Gases by a «Molecular Trapdoor» Mechanism in Chabazite Zeolites. Journal of the American Chemical Society, 134(46), 19246-19253. doi:10.1021/ja309274y | es_ES |
dc.description.references | Fairen-Jimenez, D., Moggach, S. A., Wharmby, M. T., Wright, P. A., Parsons, S., & Düren, T. (2011). Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations. Journal of the American Chemical Society, 133(23), 8900-8902. doi:10.1021/ja202154j | es_ES |
dc.description.references | Chokbunpiam, T., Chanajaree, R., Remsungnen, T., Saengsawang, O., Fritzsche, S., Chmelik, C., … Hannongbua, S. (2014). N2 in ZIF-8: Sorbate induced structural changes and self-diffusion. Microporous and Mesoporous Materials, 187, 1-6. doi:10.1016/j.micromeso.2013.12.012 | es_ES |
dc.description.references | Llorens, J., & Pera-Titus, M. (2009). A thermodynamic analysis of gas adsorption on microporous materials: Evaluation of energy heterogeneity. Journal of Colloid and Interface Science, 331(2), 302-311. doi:10.1016/j.jcis.2008.10.086 | es_ES |
dc.description.references | Pera-Titus, M., & Llorens, J. (2010). Evaluation of confinement effects in zeolites under Henry’s adsorption regime. Applied Surface Science, 256(17), 5305-5310. doi:10.1016/j.apsusc.2009.12.067 | es_ES |
dc.description.references | Pera-Titus, M. (2011). Thermodynamic Analysis of Type VI Adsorption Isotherms in MFI Zeolites. The Journal of Physical Chemistry C, 115(8), 3346-3357. doi:10.1021/jp109449q | es_ES |
dc.description.references | Aguado, S., Bergeret, G., Titus, M. P., Moizan, V., Nieto-Draghi, C., Bats, N., & Farrusseng, D. (2011). Guest-induced gate-opening of a zeolite imidazolate framework. New J. Chem., 35(3), 546-550. doi:10.1039/c0nj00836b | es_ES |
dc.description.references | Pera-Titus, M. (2014). Intrinsic Flexibility of the Zeolitic Imidazolate Framework ZIF-7 Unveiled by CO2Adsorption and Hg Intrusion. ChemPhysChem, 15(8), 1581-1586. doi:10.1002/cphc.201400084 | es_ES |
dc.description.references | Pera-Titus, M., Savonnet, M., & Farrusseng, D. (2010). Evaluation of Energy Heterogeneity in Metal−Organic Frameworks: Absence of Henry’s Region in MIL-53 and MIL-68 Materials? The Journal of Physical Chemistry C, 114(41), 17665-17674. doi:10.1021/jp104788p | es_ES |
dc.description.references | Pera-Titus, M., Lescouet, T., Aguado, S., & Farrusseng, D. (2012). Quantitative Characterization of Breathing upon Adsorption for a Series of Amino-Functionalized MIL-53. The Journal of Physical Chemistry C, 116(17), 9507-9516. doi:10.1021/jp2117856 | es_ES |
dc.description.references | Pera-Titus, M., & Farrusseng, D. (2012). Guest-Induced Gate Opening and Breathing Phenomena in Soft Porous Crystals: Building Thermodynamically Consistent Isotherms. The Journal of Physical Chemistry C, 116(2), 1638-1649. doi:10.1021/jp210174h | es_ES |
dc.description.references | Chatelain, T., Patarin, J., Fousson, E., Soulard, M., Guth, J. L., & Schulz, P. (1995). Synthesis and characterization of high-silica zeolite RHO prepared in the presence of 18-crown-6 ether as organic template. Microporous Materials, 4(2-3), 231-238. doi:10.1016/0927-6513(95)00009-x | es_ES |
dc.description.references | Li, X., & Iglesia, E. (2008). Pt/[Fe]ZSM-5 modified by Na and Cs cations: an active and selective catalyst for dehydrogenation of n-alkanes to n-alkenes. Chem. Commun., (5), 594-596. doi:10.1039/b715543c | es_ES |
dc.description.references | Myers, A. L. (2002). Thermodynamics of adsorption in porous materials. AIChE Journal, 48(1), 145-160. doi:10.1002/aic.690480115 | es_ES |
dc.description.references | Pera-Titus, M. (2010). On an isotherm thermodynamically consistent in Henry’s region for describing gas adsorption in microporous materials. Journal of Colloid and Interface Science, 345(2), 410-416. doi:10.1016/j.jcis.2010.01.027 | es_ES |
dc.description.references | Coudert, F.-X., Jeffroy, M., Fuchs, A. H., Boutin, A., & Mellot-Draznieks, C. (2008). Thermodynamics of Guest-Induced Structural Transitions in Hybrid Organic−Inorganic Frameworks. Journal of the American Chemical Society, 130(43), 14294-14302. doi:10.1021/ja805129c | es_ES |
dc.description.references | Coudert, F.-X., Mellot-Draznieks, C., Fuchs, A. H., & Boutin, A. (2009). Prediction of Breathing and Gate-Opening Transitions Upon Binary Mixture Adsorption in Metal−Organic Frameworks. Journal of the American Chemical Society, 131(32), 11329-11331. doi:10.1021/ja904123f | es_ES |
dc.description.references | Ridha, F. N., & Webley, P. A. (2010). Entropic effects and isosteric heats of nitrogen and carbon dioxide adsorption on chabazite zeolites. Microporous and Mesoporous Materials, 132(1-2), 22-30. doi:10.1016/j.micromeso.2009.07.025 | es_ES |