- -

Thermodynamic analysis of framework deformation in Na,Cs-RHO zeolite upon CO2 adsorption

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermodynamic analysis of framework deformation in Na,Cs-RHO zeolite upon CO2 adsorption

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pera-Titus, Marc es_ES
dc.contributor.author Palomino Roca, Miguel es_ES
dc.contributor.author Valencia Valencia, Susana es_ES
dc.contributor.author Rey Garcia, Fernando es_ES
dc.date.accessioned 2017-07-17T10:48:09Z
dc.date.available 2017-07-17T10:48:09Z
dc.date.issued 2014
dc.identifier.issn 1463-9076
dc.identifier.uri http://hdl.handle.net/10251/85254
dc.description.abstract [EN] Fully dehydrated and partially sodium-cesium containing RHO zeolite (Na,Cs-RHO) shows a genuine inflection in the CO2 isotherms in the temperature range 293-333 K that can be attributed to a sorbate-induced framework deformation from an acentric (A) to a centric (C) phase due to a partial cation rearrangement. This peculiar sorption pattern can be captured by the formulation of thermodynamic isotherms, providing a direct enthalpic and entropic signature of the CO2 adsorption-desorption process during deformation. Using this formulation, the energy barrier between the acentric and centric phases for CO2 adsorption-desorption was estimated in the range 4.7-9.6 J g(-1) of solid (15-32 kJ mol(-1)), reflecting a higher CO2 affinity for the acentric phase, whereas the elastic energy involved during framework distortion was estimated in the range 6-12 J g(-1) of solid (19-39 kJ mol(-1)) with a relative maximum at 303 K and showing a dominant entropic contribution. es_ES
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject RHO zeolite es_ES
dc.subject CO2 adsorption es_ES
dc.subject Thermodynamic isotherms es_ES
dc.subject Phase transformation es_ES
dc.subject Zeolite es_ES
dc.subject Adsorption es_ES
dc.title Thermodynamic analysis of framework deformation in Na,Cs-RHO zeolite upon CO2 adsorption es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C4CP03409K
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Pera-Titus, M.; Palomino Roca, M.; Valencia Valencia, S.; Rey Garcia, F. (2014). Thermodynamic analysis of framework deformation in Na,Cs-RHO zeolite upon CO2 adsorption. Physical Chemistry Chemical Physics. 16(44):24391-24400. doi:10.1039/C4CP03409K es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1039/c4cp03409k es_ES
dc.description.upvformatpinicio 24391 es_ES
dc.description.upvformatpfin 24400 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 44 es_ES
dc.relation.senia 276454 es_ES
dc.identifier.eissn 1463-9084
dc.identifier.pmid 25300941
dc.description.references Kapko, V., Dawson, C., Treacy, M. M. J., & Thorpe, M. F. (2010). Flexibility of ideal zeolite frameworks. Physical Chemistry Chemical Physics, 12(30), 8531. doi:10.1039/c003977b es_ES
dc.description.references Park, S. H., Große Kunstleve, R.-W., Graetsch, H., & Gies, H. (1997). The thermal expansion of the zeolites MFI, AFI, DOH, DDR, and MTN in their calcined and as synthesized forms. Progress in Zeolite and Microporous Materials, Preceedings of the 11th International Zeolite Conference, 1989-1994. doi:10.1016/s0167-2991(97)80664-7 es_ES
dc.description.references Marinkovic, B. A., Jardim, P. M., Saavedra, A., Lau, L. Y., Baehtz, C., de Avillez, R. R., & Rizzo, F. (2004). Negative thermal expansion in hydrated HZSM-5 orthorhombic zeolite. Microporous and Mesoporous Materials, 71(1-3), 117-124. doi:10.1016/j.micromeso.2004.03.023 es_ES
dc.description.references Bhange, D. S., & Ramaswamy, V. (2006). Negative thermal expansion in silicalite-1 and zirconium silicalite-1 having MFI structure. Materials Research Bulletin, 41(7), 1392-1402. doi:10.1016/j.materresbull.2005.12.002 es_ES
dc.description.references Cruciani, G. (2006). Zeolites upon heating: Factors governing their thermal stability and structural changes. Journal of Physics and Chemistry of Solids, 67(9-10), 1973-1994. doi:10.1016/j.jpcs.2006.05.057 es_ES
dc.description.references Bhange, D. S., & Ramaswamy, V. (2007). High temperature thermal expansion behavior of silicalite-1 molecular sieve: in situ HTXRD study. Microporous and Mesoporous Materials, 103(1-3), 235-242. doi:10.1016/j.micromeso.2007.02.013 es_ES
dc.description.references Krokidas, P. G., Nikolakis, V., & Burganos, V. N. (2012). Heating and sorption effects on silicalite-1 unit cell size and geometry. Microporous and Mesoporous Materials, 155, 65-70. doi:10.1016/j.micromeso.2011.12.052 es_ES
dc.description.references Carey, T., Corma, A., Rey, F., Tang, C. C., Hriljac, J. A., & Anderson, P. A. (2012). The effect of extra framework species on the intrinsic negative thermal expansion property of zeolites with the LTA topology. Chemical Communications, 48(47), 5829. doi:10.1039/c2cc30582h es_ES
dc.description.references Carey, T., Tang, C. C., Hriljac, J. A., & Anderson, P. A. (2014). Chemical Control of Thermal Expansion in Cation-Exchanged Zeolite A. Chemistry of Materials, 26(4), 1561-1566. doi:10.1021/cm403312q es_ES
dc.description.references Beauvais, C., Boutin, A., & Fuchs, A. H. (2004). A Numerical Evidence for Nonframework Cation Redistribution Upon Water Adsorption in Faujasite Zeolite. ChemPhysChem, 5(11), 1791-1793. doi:10.1002/cphc.200400195 es_ES
dc.description.references Beauvais, C., Boutin, A., & Fuchs, A. H. (2005). Adsorption of water in zeolite sodium-faujasite. Comptes Rendus Chimie, 8(3-4), 485-490. doi:10.1016/j.crci.2004.11.011 es_ES
dc.description.references Di Lella, A., Desbiens, N., Boutin, A., Demachy, I., Ungerer, P., Bellat, J.-P., & Fuchs, A. H. (2006). Molecular simulation studies of water physisorption in zeolites. Physical Chemistry Chemical Physics, 8(46), 5396. doi:10.1039/b610621h es_ES
dc.description.references Jeffroy, M., Boutin, A., & Fuchs, A. H. (2011). Understanding the Equilibrium Ion Exchange Properties in Faujasite Zeolite from Monte Carlo Simulations. The Journal of Physical Chemistry B, 115(50), 15059-15066. doi:10.1021/jp209067n es_ES
dc.description.references Plant, D. F., Maurin, G., Jobic, H., & Llewellyn, P. L. (2006). Molecular Dynamics Simulation of the Cation Motion upon Adsorption of CO2in Faujasite Zeolite Systems. The Journal of Physical Chemistry B, 110(29), 14372-14378. doi:10.1021/jp062381u es_ES
dc.description.references ROBSON, H. E., SHOEMAKER, D. P., OGILVIE, R. A., & MANOR, P. C. (1973). Synthesis and Crystal Structure of Zeolite Rho—A New Zeolite Related to Linde Type A. Molecular Sieves, 106-115. doi:10.1021/ba-1973-0121.ch009 es_ES
dc.description.references Corbin, D. R., Abrams, L., Jones, G. A., Eddy, M. M., Harrison, W. T. A., Stucky, G. D., & Cox, D. E. (1990). Flexibility of the zeolite RHO framework: in situ x-ray and neutron powder structural characterization of divalent cation-exchanged zeolite RHO. Journal of the American Chemical Society, 112(12), 4821-4830. doi:10.1021/ja00168a029 es_ES
dc.description.references Lapshin, A. E., & Golubeva, O. Y. (2013). Distribution of extra-framework cations and water molecules in synthetic high-silica (Na, Cs)-rho-zeolite. Glass Physics and Chemistry, 39(4), 420-424. doi:10.1134/s1087659613040135 es_ES
dc.description.references Parise, J. B., & Prince, E. (1983). The structure of cesium-exchanged zeolite-RhO at 293K and 493K determined from high resolution neutron powder data. Materials Research Bulletin, 18(7), 841-852. doi:10.1016/0025-5408(83)90062-4 es_ES
dc.description.references McCusker, L. B. (1984). Crystal structures of the ammonium and hydrogen forms of zeolite rho. Zeolites, 4(1), 51-55. doi:10.1016/0144-2449(84)90073-3 es_ES
dc.description.references Fischer, R. X., Baur, W. H., Shannon, R. D., Staley, R. H., Abrams, L., Vega, A. J., & Jorgensen, J. D. (1988). Neutron powder diffraction study and physical characterization of zeolite D-Rho shallow-bed calcined in steam at 773 K. Acta Crystallographica Section B Structural Science, 44(4), 321-334. doi:10.1107/s0108768188000916 es_ES
dc.description.references Lozinska, M. M., Mangano, E., Mowat, J. P. S., Shepherd, A. M., Howe, R. F., Thompson, S. P., … Wright, P. A. (2012). Understanding Carbon Dioxide Adsorption on Univalent Cation Forms of the Flexible Zeolite Rho at Conditions Relevant to Carbon Capture from Flue Gases. Journal of the American Chemical Society, 134(42), 17628-17642. doi:10.1021/ja3070864 es_ES
dc.description.references Parise, J. B., Gier, T. E., Corbin, D. R., Abrams, L., Jorgensen, J. D., & Prince, E. (1984). Flexibility of the framework of zeolite Rho. Structural variation from 11 to 573 K. A study using neutron powder diffraction data. The Journal of Physical Chemistry, 88(11), 2303-2307. doi:10.1021/j150655a024 es_ES
dc.description.references Parise, J. B., & Cox, D. E. (1984). Structural changes occurring upon dehydration of zeolite Rho. A study using neutron powder diffraction and distance-least-squares structural modeling. The Journal of Physical Chemistry, 88(8), 1635-1640. doi:10.1021/j150652a039 es_ES
dc.description.references Bieniok, A., & Baur, W. H. (1991). A large volume contraction accompanies the low- to high-temperature phase transition of zeolite Sr-rho. Journal of Solid State Chemistry, 90(1), 173-177. doi:10.1016/0022-4596(91)90183-i es_ES
dc.description.references Lee, Y., Hriljac, J. A., Vogt, T., Parise, J. B., Edmondson, M. J., Anderson, P. A., … Nagai, T. (2001). Phase Transition of Zeolite RHO at High-Pressure. Journal of the American Chemical Society, 123(34), 8418-8419. doi:10.1021/ja0161554 es_ES
dc.description.references Reisner, B. A., Toby, B. H., Lee, Y., Parise, J. B., Larese, J. Z., Kahlenberg, V., … Corbin, D. R. (2000). Understanding negative thermal expansion and ‘trap door’ cation relocations in zeolite rho. Chemical Communications, (22), 2221-2222. doi:10.1039/b006929i es_ES
dc.description.references Lee, Y., Reisner, B. A., Hanson, J. C., Jones, G. A., Parise, J. B., Corbin, D. R., … Larese, J. Z. (2001). New Insight into Cation Relocations within the Pores of Zeolite Rho:  In Situ Synchrotron X-Ray and Neutron Powder Diffraction Studies of Pb- and Cd-Exchanged Rho. The Journal of Physical Chemistry B, 105(30), 7188-7199. doi:10.1021/jp0100349 es_ES
dc.description.references Balestra, S. R. G., Gutiérrez-Sevillano, J. J., Merkling, P. J., Dubbeldam, D., & Calero, S. (2013). Simulation Study of Structural Changes in Zeolite RHO. The Journal of Physical Chemistry C, 117(22), 11592-11599. doi:10.1021/jp4026283 es_ES
dc.description.references HRHO, I. (1988). Selective synthesis of dimethylamine over small-pore zeolites. Journal of Catalysis, 113(2), 367-382. doi:10.1016/0021-9517(88)90265-5 es_ES
dc.description.references ABRAMS, L. (1990). Synthesis of dimethylamine by zeolite Rho: A rational basis for selectivity. Journal of Catalysis, 126(2), 610-618. doi:10.1016/0021-9517(90)90024-e es_ES
dc.description.references Smith, M. L., Corbin, D. R., Abrams, L., & Dybowski, C. (1993). Flexibility of zeolite rho: xenon-129 NMR studies of entrapped xenon in cadmium-rho. The Journal of Physical Chemistry, 97(30), 7793-7795. doi:10.1021/j100132a001 es_ES
dc.description.references Parise, J. B., Corbin, D. R., & Abrams, L. (1995). Structural changes upon sorption and desorption of Xe from Cd-exchanged zeolite rho: a real-time synchrotron X-ray powder diffraction study. Microporous Materials, 4(2-3), 99-110. doi:10.1016/0927-6513(94)00088-d es_ES
dc.description.references Lee, Y., Vogt, T., Hriljac, J. A., & Parise, J. B. (2002). Discovery of a Rhombohedral Form of the Li-Exchanged Aluminogermanate Zeolite RHO and Its Pressure-, Temperature-, and Composition-Induced Phase Transitions. Chemistry of Materials, 14(8), 3501-3508. doi:10.1021/cm020257r es_ES
dc.description.references Palomino, M., Corma, A., Jordá, J. L., Rey, F., & Valencia, S. (2012). Zeolite Rho: a highly selective adsorbent for CO2/CH4separation induced by a structural phase modification. Chem. Commun., 48(2), 215-217. doi:10.1039/c1cc16320e es_ES
dc.description.references Lozinska, M. M., Mowat, J. P. S., Wright, P. A., Thompson, S. P., Jorda, J. L., Palomino, M., … Rey, F. (2014). Cation Gating and Relocation during the Highly Selective «Trapdoor» Adsorption of CO2on Univalent Cation Forms of Zeolite Rho. Chemistry of Materials, 26(6), 2052-2061. doi:10.1021/cm404028f es_ES
dc.description.references Shang, J., Li, G., Singh, R., Gu, Q., Nairn, K. M., Bastow, T. J., … Webley, P. A. (2012). Discriminative Separation of Gases by a «Molecular Trapdoor» Mechanism in Chabazite Zeolites. Journal of the American Chemical Society, 134(46), 19246-19253. doi:10.1021/ja309274y es_ES
dc.description.references Fairen-Jimenez, D., Moggach, S. A., Wharmby, M. T., Wright, P. A., Parsons, S., & Düren, T. (2011). Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations. Journal of the American Chemical Society, 133(23), 8900-8902. doi:10.1021/ja202154j es_ES
dc.description.references Chokbunpiam, T., Chanajaree, R., Remsungnen, T., Saengsawang, O., Fritzsche, S., Chmelik, C., … Hannongbua, S. (2014). N2 in ZIF-8: Sorbate induced structural changes and self-diffusion. Microporous and Mesoporous Materials, 187, 1-6. doi:10.1016/j.micromeso.2013.12.012 es_ES
dc.description.references Llorens, J., & Pera-Titus, M. (2009). A thermodynamic analysis of gas adsorption on microporous materials: Evaluation of energy heterogeneity. Journal of Colloid and Interface Science, 331(2), 302-311. doi:10.1016/j.jcis.2008.10.086 es_ES
dc.description.references Pera-Titus, M., & Llorens, J. (2010). Evaluation of confinement effects in zeolites under Henry’s adsorption regime. Applied Surface Science, 256(17), 5305-5310. doi:10.1016/j.apsusc.2009.12.067 es_ES
dc.description.references Pera-Titus, M. (2011). Thermodynamic Analysis of Type VI Adsorption Isotherms in MFI Zeolites. The Journal of Physical Chemistry C, 115(8), 3346-3357. doi:10.1021/jp109449q es_ES
dc.description.references Aguado, S., Bergeret, G., Titus, M. P., Moizan, V., Nieto-Draghi, C., Bats, N., & Farrusseng, D. (2011). Guest-induced gate-opening of a zeolite imidazolate framework. New J. Chem., 35(3), 546-550. doi:10.1039/c0nj00836b es_ES
dc.description.references Pera-Titus, M. (2014). Intrinsic Flexibility of the Zeolitic Imidazolate Framework ZIF-7 Unveiled by CO2Adsorption and Hg Intrusion. ChemPhysChem, 15(8), 1581-1586. doi:10.1002/cphc.201400084 es_ES
dc.description.references Pera-Titus, M., Savonnet, M., & Farrusseng, D. (2010). Evaluation of Energy Heterogeneity in Metal−Organic Frameworks: Absence of Henry’s Region in MIL-53 and MIL-68 Materials? The Journal of Physical Chemistry C, 114(41), 17665-17674. doi:10.1021/jp104788p es_ES
dc.description.references Pera-Titus, M., Lescouet, T., Aguado, S., & Farrusseng, D. (2012). Quantitative Characterization of Breathing upon Adsorption for a Series of Amino-Functionalized MIL-53. The Journal of Physical Chemistry C, 116(17), 9507-9516. doi:10.1021/jp2117856 es_ES
dc.description.references Pera-Titus, M., & Farrusseng, D. (2012). Guest-Induced Gate Opening and Breathing Phenomena in Soft Porous Crystals: Building Thermodynamically Consistent Isotherms. The Journal of Physical Chemistry C, 116(2), 1638-1649. doi:10.1021/jp210174h es_ES
dc.description.references Chatelain, T., Patarin, J., Fousson, E., Soulard, M., Guth, J. L., & Schulz, P. (1995). Synthesis and characterization of high-silica zeolite RHO prepared in the presence of 18-crown-6 ether as organic template. Microporous Materials, 4(2-3), 231-238. doi:10.1016/0927-6513(95)00009-x es_ES
dc.description.references Li, X., & Iglesia, E. (2008). Pt/[Fe]ZSM-5 modified by Na and Cs cations: an active and selective catalyst for dehydrogenation of n-alkanes to n-alkenes. Chem. Commun., (5), 594-596. doi:10.1039/b715543c es_ES
dc.description.references Myers, A. L. (2002). Thermodynamics of adsorption in porous materials. AIChE Journal, 48(1), 145-160. doi:10.1002/aic.690480115 es_ES
dc.description.references Pera-Titus, M. (2010). On an isotherm thermodynamically consistent in Henry’s region for describing gas adsorption in microporous materials. Journal of Colloid and Interface Science, 345(2), 410-416. doi:10.1016/j.jcis.2010.01.027 es_ES
dc.description.references Coudert, F.-X., Jeffroy, M., Fuchs, A. H., Boutin, A., & Mellot-Draznieks, C. (2008). Thermodynamics of Guest-Induced Structural Transitions in Hybrid Organic−Inorganic Frameworks. Journal of the American Chemical Society, 130(43), 14294-14302. doi:10.1021/ja805129c es_ES
dc.description.references Coudert, F.-X., Mellot-Draznieks, C., Fuchs, A. H., & Boutin, A. (2009). Prediction of Breathing and Gate-Opening Transitions Upon Binary Mixture Adsorption in Metal−Organic Frameworks. Journal of the American Chemical Society, 131(32), 11329-11331. doi:10.1021/ja904123f es_ES
dc.description.references Ridha, F. N., & Webley, P. A. (2010). Entropic effects and isosteric heats of nitrogen and carbon dioxide adsorption on chabazite zeolites. Microporous and Mesoporous Materials, 132(1-2), 22-30. doi:10.1016/j.micromeso.2009.07.025 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem