Kapko, V., Dawson, C., Treacy, M. M. J., & Thorpe, M. F. (2010). Flexibility of ideal zeolite frameworks. Physical Chemistry Chemical Physics, 12(30), 8531. doi:10.1039/c003977b
Park, S. H., Große Kunstleve, R.-W., Graetsch, H., & Gies, H. (1997). The thermal expansion of the zeolites MFI, AFI, DOH, DDR, and MTN in their calcined and as synthesized forms. Progress in Zeolite and Microporous Materials, Preceedings of the 11th International Zeolite Conference, 1989-1994. doi:10.1016/s0167-2991(97)80664-7
Marinkovic, B. A., Jardim, P. M., Saavedra, A., Lau, L. Y., Baehtz, C., de Avillez, R. R., & Rizzo, F. (2004). Negative thermal expansion in hydrated HZSM-5 orthorhombic zeolite. Microporous and Mesoporous Materials, 71(1-3), 117-124. doi:10.1016/j.micromeso.2004.03.023
[+]
Kapko, V., Dawson, C., Treacy, M. M. J., & Thorpe, M. F. (2010). Flexibility of ideal zeolite frameworks. Physical Chemistry Chemical Physics, 12(30), 8531. doi:10.1039/c003977b
Park, S. H., Große Kunstleve, R.-W., Graetsch, H., & Gies, H. (1997). The thermal expansion of the zeolites MFI, AFI, DOH, DDR, and MTN in their calcined and as synthesized forms. Progress in Zeolite and Microporous Materials, Preceedings of the 11th International Zeolite Conference, 1989-1994. doi:10.1016/s0167-2991(97)80664-7
Marinkovic, B. A., Jardim, P. M., Saavedra, A., Lau, L. Y., Baehtz, C., de Avillez, R. R., & Rizzo, F. (2004). Negative thermal expansion in hydrated HZSM-5 orthorhombic zeolite. Microporous and Mesoporous Materials, 71(1-3), 117-124. doi:10.1016/j.micromeso.2004.03.023
Bhange, D. S., & Ramaswamy, V. (2006). Negative thermal expansion in silicalite-1 and zirconium silicalite-1 having MFI structure. Materials Research Bulletin, 41(7), 1392-1402. doi:10.1016/j.materresbull.2005.12.002
Cruciani, G. (2006). Zeolites upon heating: Factors governing their thermal stability and structural changes. Journal of Physics and Chemistry of Solids, 67(9-10), 1973-1994. doi:10.1016/j.jpcs.2006.05.057
Bhange, D. S., & Ramaswamy, V. (2007). High temperature thermal expansion behavior of silicalite-1 molecular sieve: in situ HTXRD study. Microporous and Mesoporous Materials, 103(1-3), 235-242. doi:10.1016/j.micromeso.2007.02.013
Krokidas, P. G., Nikolakis, V., & Burganos, V. N. (2012). Heating and sorption effects on silicalite-1 unit cell size and geometry. Microporous and Mesoporous Materials, 155, 65-70. doi:10.1016/j.micromeso.2011.12.052
Carey, T., Corma, A., Rey, F., Tang, C. C., Hriljac, J. A., & Anderson, P. A. (2012). The effect of extra framework species on the intrinsic negative thermal expansion property of zeolites with the LTA topology. Chemical Communications, 48(47), 5829. doi:10.1039/c2cc30582h
Carey, T., Tang, C. C., Hriljac, J. A., & Anderson, P. A. (2014). Chemical Control of Thermal Expansion in Cation-Exchanged Zeolite A. Chemistry of Materials, 26(4), 1561-1566. doi:10.1021/cm403312q
Beauvais, C., Boutin, A., & Fuchs, A. H. (2004). A Numerical Evidence for Nonframework Cation Redistribution Upon Water Adsorption in Faujasite Zeolite. ChemPhysChem, 5(11), 1791-1793. doi:10.1002/cphc.200400195
Beauvais, C., Boutin, A., & Fuchs, A. H. (2005). Adsorption of water in zeolite sodium-faujasite. Comptes Rendus Chimie, 8(3-4), 485-490. doi:10.1016/j.crci.2004.11.011
Di Lella, A., Desbiens, N., Boutin, A., Demachy, I., Ungerer, P., Bellat, J.-P., & Fuchs, A. H. (2006). Molecular simulation studies of water physisorption in zeolites. Physical Chemistry Chemical Physics, 8(46), 5396. doi:10.1039/b610621h
Jeffroy, M., Boutin, A., & Fuchs, A. H. (2011). Understanding the Equilibrium Ion Exchange Properties in Faujasite Zeolite from Monte Carlo Simulations. The Journal of Physical Chemistry B, 115(50), 15059-15066. doi:10.1021/jp209067n
Plant, D. F., Maurin, G., Jobic, H., & Llewellyn, P. L. (2006). Molecular Dynamics Simulation of the Cation Motion upon Adsorption of CO2in Faujasite Zeolite Systems. The Journal of Physical Chemistry B, 110(29), 14372-14378. doi:10.1021/jp062381u
ROBSON, H. E., SHOEMAKER, D. P., OGILVIE, R. A., & MANOR, P. C. (1973). Synthesis and Crystal Structure of Zeolite Rho—A New Zeolite Related to Linde Type A. Molecular Sieves, 106-115. doi:10.1021/ba-1973-0121.ch009
Corbin, D. R., Abrams, L., Jones, G. A., Eddy, M. M., Harrison, W. T. A., Stucky, G. D., & Cox, D. E. (1990). Flexibility of the zeolite RHO framework: in situ x-ray and neutron powder structural characterization of divalent cation-exchanged zeolite RHO. Journal of the American Chemical Society, 112(12), 4821-4830. doi:10.1021/ja00168a029
Lapshin, A. E., & Golubeva, O. Y. (2013). Distribution of extra-framework cations and water molecules in synthetic high-silica (Na, Cs)-rho-zeolite. Glass Physics and Chemistry, 39(4), 420-424. doi:10.1134/s1087659613040135
Parise, J. B., & Prince, E. (1983). The structure of cesium-exchanged zeolite-RhO at 293K and 493K determined from high resolution neutron powder data. Materials Research Bulletin, 18(7), 841-852. doi:10.1016/0025-5408(83)90062-4
McCusker, L. B. (1984). Crystal structures of the ammonium and hydrogen forms of zeolite rho. Zeolites, 4(1), 51-55. doi:10.1016/0144-2449(84)90073-3
Fischer, R. X., Baur, W. H., Shannon, R. D., Staley, R. H., Abrams, L., Vega, A. J., & Jorgensen, J. D. (1988). Neutron powder diffraction study and physical characterization of zeolite D-Rho shallow-bed calcined in steam at 773 K. Acta Crystallographica Section B Structural Science, 44(4), 321-334. doi:10.1107/s0108768188000916
Lozinska, M. M., Mangano, E., Mowat, J. P. S., Shepherd, A. M., Howe, R. F., Thompson, S. P., … Wright, P. A. (2012). Understanding Carbon Dioxide Adsorption on Univalent Cation Forms of the Flexible Zeolite Rho at Conditions Relevant to Carbon Capture from Flue Gases. Journal of the American Chemical Society, 134(42), 17628-17642. doi:10.1021/ja3070864
Parise, J. B., Gier, T. E., Corbin, D. R., Abrams, L., Jorgensen, J. D., & Prince, E. (1984). Flexibility of the framework of zeolite Rho. Structural variation from 11 to 573 K. A study using neutron powder diffraction data. The Journal of Physical Chemistry, 88(11), 2303-2307. doi:10.1021/j150655a024
Parise, J. B., & Cox, D. E. (1984). Structural changes occurring upon dehydration of zeolite Rho. A study using neutron powder diffraction and distance-least-squares structural modeling. The Journal of Physical Chemistry, 88(8), 1635-1640. doi:10.1021/j150652a039
Bieniok, A., & Baur, W. H. (1991). A large volume contraction accompanies the low- to high-temperature phase transition of zeolite Sr-rho. Journal of Solid State Chemistry, 90(1), 173-177. doi:10.1016/0022-4596(91)90183-i
Lee, Y., Hriljac, J. A., Vogt, T., Parise, J. B., Edmondson, M. J., Anderson, P. A., … Nagai, T. (2001). Phase Transition of Zeolite RHO at High-Pressure. Journal of the American Chemical Society, 123(34), 8418-8419. doi:10.1021/ja0161554
Reisner, B. A., Toby, B. H., Lee, Y., Parise, J. B., Larese, J. Z., Kahlenberg, V., … Corbin, D. R. (2000). Understanding negative thermal expansion and ‘trap door’ cation relocations in zeolite rho. Chemical Communications, (22), 2221-2222. doi:10.1039/b006929i
Lee, Y., Reisner, B. A., Hanson, J. C., Jones, G. A., Parise, J. B., Corbin, D. R., … Larese, J. Z. (2001). New Insight into Cation Relocations within the Pores of Zeolite Rho: In Situ Synchrotron X-Ray and Neutron Powder Diffraction Studies of Pb- and Cd-Exchanged Rho. The Journal of Physical Chemistry B, 105(30), 7188-7199. doi:10.1021/jp0100349
Balestra, S. R. G., Gutiérrez-Sevillano, J. J., Merkling, P. J., Dubbeldam, D., & Calero, S. (2013). Simulation Study of Structural Changes in Zeolite RHO. The Journal of Physical Chemistry C, 117(22), 11592-11599. doi:10.1021/jp4026283
HRHO, I. (1988). Selective synthesis of dimethylamine over small-pore zeolites. Journal of Catalysis, 113(2), 367-382. doi:10.1016/0021-9517(88)90265-5
ABRAMS, L. (1990). Synthesis of dimethylamine by zeolite Rho: A rational basis for selectivity. Journal of Catalysis, 126(2), 610-618. doi:10.1016/0021-9517(90)90024-e
Smith, M. L., Corbin, D. R., Abrams, L., & Dybowski, C. (1993). Flexibility of zeolite rho: xenon-129 NMR studies of entrapped xenon in cadmium-rho. The Journal of Physical Chemistry, 97(30), 7793-7795. doi:10.1021/j100132a001
Parise, J. B., Corbin, D. R., & Abrams, L. (1995). Structural changes upon sorption and desorption of Xe from Cd-exchanged zeolite rho: a real-time synchrotron X-ray powder diffraction study. Microporous Materials, 4(2-3), 99-110. doi:10.1016/0927-6513(94)00088-d
Lee, Y., Vogt, T., Hriljac, J. A., & Parise, J. B. (2002). Discovery of a Rhombohedral Form of the Li-Exchanged Aluminogermanate Zeolite RHO and Its Pressure-, Temperature-, and Composition-Induced Phase Transitions. Chemistry of Materials, 14(8), 3501-3508. doi:10.1021/cm020257r
Palomino, M., Corma, A., Jordá, J. L., Rey, F., & Valencia, S. (2012). Zeolite Rho: a highly selective adsorbent for CO2/CH4separation induced by a structural phase modification. Chem. Commun., 48(2), 215-217. doi:10.1039/c1cc16320e
Lozinska, M. M., Mowat, J. P. S., Wright, P. A., Thompson, S. P., Jorda, J. L., Palomino, M., … Rey, F. (2014). Cation Gating and Relocation during the Highly Selective «Trapdoor» Adsorption of CO2on Univalent Cation Forms of Zeolite Rho. Chemistry of Materials, 26(6), 2052-2061. doi:10.1021/cm404028f
Shang, J., Li, G., Singh, R., Gu, Q., Nairn, K. M., Bastow, T. J., … Webley, P. A. (2012). Discriminative Separation of Gases by a «Molecular Trapdoor» Mechanism in Chabazite Zeolites. Journal of the American Chemical Society, 134(46), 19246-19253. doi:10.1021/ja309274y
Fairen-Jimenez, D., Moggach, S. A., Wharmby, M. T., Wright, P. A., Parsons, S., & Düren, T. (2011). Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations. Journal of the American Chemical Society, 133(23), 8900-8902. doi:10.1021/ja202154j
Chokbunpiam, T., Chanajaree, R., Remsungnen, T., Saengsawang, O., Fritzsche, S., Chmelik, C., … Hannongbua, S. (2014). N2 in ZIF-8: Sorbate induced structural changes and self-diffusion. Microporous and Mesoporous Materials, 187, 1-6. doi:10.1016/j.micromeso.2013.12.012
Llorens, J., & Pera-Titus, M. (2009). A thermodynamic analysis of gas adsorption on microporous materials: Evaluation of energy heterogeneity. Journal of Colloid and Interface Science, 331(2), 302-311. doi:10.1016/j.jcis.2008.10.086
Pera-Titus, M., & Llorens, J. (2010). Evaluation of confinement effects in zeolites under Henry’s adsorption regime. Applied Surface Science, 256(17), 5305-5310. doi:10.1016/j.apsusc.2009.12.067
Pera-Titus, M. (2011). Thermodynamic Analysis of Type VI Adsorption Isotherms in MFI Zeolites. The Journal of Physical Chemistry C, 115(8), 3346-3357. doi:10.1021/jp109449q
Aguado, S., Bergeret, G., Titus, M. P., Moizan, V., Nieto-Draghi, C., Bats, N., & Farrusseng, D. (2011). Guest-induced gate-opening of a zeolite imidazolate framework. New J. Chem., 35(3), 546-550. doi:10.1039/c0nj00836b
Pera-Titus, M. (2014). Intrinsic Flexibility of the Zeolitic Imidazolate Framework ZIF-7 Unveiled by CO2Adsorption and Hg Intrusion. ChemPhysChem, 15(8), 1581-1586. doi:10.1002/cphc.201400084
Pera-Titus, M., Savonnet, M., & Farrusseng, D. (2010). Evaluation of Energy Heterogeneity in Metal−Organic Frameworks: Absence of Henry’s Region in MIL-53 and MIL-68 Materials? The Journal of Physical Chemistry C, 114(41), 17665-17674. doi:10.1021/jp104788p
Pera-Titus, M., Lescouet, T., Aguado, S., & Farrusseng, D. (2012). Quantitative Characterization of Breathing upon Adsorption for a Series of Amino-Functionalized MIL-53. The Journal of Physical Chemistry C, 116(17), 9507-9516. doi:10.1021/jp2117856
Pera-Titus, M., & Farrusseng, D. (2012). Guest-Induced Gate Opening and Breathing Phenomena in Soft Porous Crystals: Building Thermodynamically Consistent Isotherms. The Journal of Physical Chemistry C, 116(2), 1638-1649. doi:10.1021/jp210174h
Chatelain, T., Patarin, J., Fousson, E., Soulard, M., Guth, J. L., & Schulz, P. (1995). Synthesis and characterization of high-silica zeolite RHO prepared in the presence of 18-crown-6 ether as organic template. Microporous Materials, 4(2-3), 231-238. doi:10.1016/0927-6513(95)00009-x
Li, X., & Iglesia, E. (2008). Pt/[Fe]ZSM-5 modified by Na and Cs cations: an active and selective catalyst for dehydrogenation of n-alkanes to n-alkenes. Chem. Commun., (5), 594-596. doi:10.1039/b715543c
Myers, A. L. (2002). Thermodynamics of adsorption in porous materials. AIChE Journal, 48(1), 145-160. doi:10.1002/aic.690480115
Pera-Titus, M. (2010). On an isotherm thermodynamically consistent in Henry’s region for describing gas adsorption in microporous materials. Journal of Colloid and Interface Science, 345(2), 410-416. doi:10.1016/j.jcis.2010.01.027
Coudert, F.-X., Jeffroy, M., Fuchs, A. H., Boutin, A., & Mellot-Draznieks, C. (2008). Thermodynamics of Guest-Induced Structural Transitions in Hybrid Organic−Inorganic Frameworks. Journal of the American Chemical Society, 130(43), 14294-14302. doi:10.1021/ja805129c
Coudert, F.-X., Mellot-Draznieks, C., Fuchs, A. H., & Boutin, A. (2009). Prediction of Breathing and Gate-Opening Transitions Upon Binary Mixture Adsorption in Metal−Organic Frameworks. Journal of the American Chemical Society, 131(32), 11329-11331. doi:10.1021/ja904123f
Ridha, F. N., & Webley, P. A. (2010). Entropic effects and isosteric heats of nitrogen and carbon dioxide adsorption on chabazite zeolites. Microporous and Mesoporous Materials, 132(1-2), 22-30. doi:10.1016/j.micromeso.2009.07.025
[-]