- -

Cell-free cartilage engineering approach using hyaluronic acid-polycaprolactone scaffolds: A study invivo

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Cell-free cartilage engineering approach using hyaluronic acid-polycaprolactone scaffolds: A study invivo

Show full item record

Lebourg, MM.; Martínez Díaz, S.; Garcia Giralt, N.; Torres Claramunt, R.; Gómez-Tejedor, JA.; Gómez Ribelles, JL.; Vila Canet, G.... (2014). Cell-free cartilage engineering approach using hyaluronic acid-polycaprolactone scaffolds: A study invivo. Journal of Biomaterials Applications. 28(9):1304-1315. https://doi.org/10.1177/0885328213507298

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/85547

Files in this item

Item Metadata

Title: Cell-free cartilage engineering approach using hyaluronic acid-polycaprolactone scaffolds: A study invivo
Author: Lebourg, Myriam Madeleine Martínez Díaz, S. Garcia Giralt, Natalia Torres Claramunt, R. Gómez-Tejedor, José Antonio Gómez Ribelles, José Luís Vila Canet, G Monllau, J.C.
UPV Unit: Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Issued date:
Abstract:
Polycaprolactone scaffolds modified with cross-linked hyaluronic acid were prepared in order to establish whether a more hydrophilic and biomimetic microenvironment benefits the progenitor cells arriving from bone marrow ...[+]
Subjects: Cell-free PCL scaffold , Cartilage regeneration , Hyaluronic acid , Osteoarthritis , Tissue engineering
Copyrigths: Cerrado
Source:
Journal of Biomaterials Applications. (issn: 0885-3282 )
DOI: 10.1177/0885328213507298
Publisher:
SAGE Publications (UK and US)
Publisher version: http://dx.doi.org/10.1177/0885328213507298
Project ID:
info:eu-repo/grantAgreement/UPV//PAID-06-10/
info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/
info:eu-repo/grantAgreement/GC//2005SGR-00848/
info:eu-repo/grantAgreement/GC//2005SGR-00762/
Thanks:
JLGR, JAGT and JCM acknowledge the support of the Spanish Ministry of Science through projects No. MAT2010-21611-C03-01 and -02. The support of Grant 2005SGR 00762 and 2005SGR 00848 (Catalan Department of Universities, ...[+]
Type: Artículo

References

Van der Kraan, P. M., Buma, P., van Kuppevelt, T., & van Den Berg, W. B. (2002). Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis and Cartilage, 10(8), 631-637. doi:10.1053/joca.2002.0806

Martinez-Diaz, S., Garcia-Giralt, N., Lebourg, M., Gómez-Tejedor, J.-A., Vila, G., Caceres, E., … Monllau, J. C. (2010). In Vivo Evaluation of 3-Dimensional Polycaprolactone Scaffolds for Cartilage Repair in Rabbits. The American Journal of Sports Medicine, 38(3), 509-519. doi:10.1177/0363546509352448

Patti, A. M., Gabriele, A., Vulcano, A., Ramieri, M. T., & Della Rocca, C. (2001). Effect of hyaluronic acid on human chondrocyte cell lines from articular cartilage. Tissue and Cell, 33(3), 294-300. doi:10.1054/tice.2001.0178 [+]
Van der Kraan, P. M., Buma, P., van Kuppevelt, T., & van Den Berg, W. B. (2002). Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis and Cartilage, 10(8), 631-637. doi:10.1053/joca.2002.0806

Martinez-Diaz, S., Garcia-Giralt, N., Lebourg, M., Gómez-Tejedor, J.-A., Vila, G., Caceres, E., … Monllau, J. C. (2010). In Vivo Evaluation of 3-Dimensional Polycaprolactone Scaffolds for Cartilage Repair in Rabbits. The American Journal of Sports Medicine, 38(3), 509-519. doi:10.1177/0363546509352448

Patti, A. M., Gabriele, A., Vulcano, A., Ramieri, M. T., & Della Rocca, C. (2001). Effect of hyaluronic acid on human chondrocyte cell lines from articular cartilage. Tissue and Cell, 33(3), 294-300. doi:10.1054/tice.2001.0178

Yoo, H. S., Lee, E. A., Yoon, J. J., & Park, T. G. (2005). Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials, 26(14), 1925-1933. doi:10.1016/j.biomaterials.2004.06.021

Grigolo, B., De Franceschi, L., Roseti, L., Cattini, L., & Facchini, A. (2005). Down regulation of degenerative cartilage molecules in chondrocytes grown on a hyaluronan-based scaffold. Biomaterials, 26(28), 5668-5676. doi:10.1016/j.biomaterials.2005.02.030

Girotto, D., Urbani, S., Brun, P., Renier, D., Barbucci, R., & Abatangelo, G. (2003). Tissue-specific gene expression in chondrocytes grown on three-dimensional hyaluronic acid scaffolds. Biomaterials, 24(19), 3265-3275. doi:10.1016/s0142-9612(03)00160-1

Brun, P., Panfilo, S., Daga Gordini, D., Cortivo, R., & Abatangelo, G. (2003). The effect of hyaluronan on CD44-mediated survival of normal and hydroxyl radical-damaged chondrocytes. Osteoarthritis and Cartilage, 11(3), 208-216. doi:10.1016/s1063-4584(02)00352-7

Ho, M.-H., Kuo, P.-Y., Hsieh, H.-J., Hsien, T.-Y., Hou, L.-T., Lai, J.-Y., & Wang, D.-M. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 25(1), 129-138. doi:10.1016/s0142-9612(03)00483-6

Peterson, L., Minas, T., Brittberg, M., Nilsson, A., Sj??gren-Jansson, E., & Lindahl, A. (2000). Two- to 9-Year Outcome After Autologous Chondrocyte Transplantation of the Knee. Clinical Orthopaedics and Related Research, 374, 212-234. doi:10.1097/00003086-200005000-00020

Smith, G. D., Taylor, J., Almqvist, K. F., Erggelet, C., Knutsen, G., Portabella, M. G., … Richardson, J. B. (2005). Arthroscopic Assessment of Cartilage Repair: A Validation Study of 2 Scoring Systems. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 21(12), 1462-1467. doi:10.1016/j.arthro.2005.09.007

Van den Borne, M. P. J., Raijmakers, N. J. H., Vanlauwe, J., Victor, J., de Jong, S. N., Bellemans, J., & Saris, D. B. F. (2007). International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis and Cartilage, 15(12), 1397-1402. doi:10.1016/j.joca.2007.05.005

Trzeciak, T., Kruczyński, J., Jaroszewski, J., & Lubiatowski, P. (2006). Evaluation of Cartilage Reconstruction by Means of Autologous Chondrocyte Versus Periosteal Graft Transplantation: An Animal Study. Transplantation Proceedings, 38(1), 305-311. doi:10.1016/j.transproceed.2005.12.028

Ito, S., Sato, M., Yamato, M., Mitani, G., Kutsuna, T., Nagai, T., … Mochida, J. (2012). Repair of articular cartilage defect with layered chondrocyte sheets and cultured synovial cells. Biomaterials, 33(21), 5278-5286. doi:10.1016/j.biomaterials.2012.03.073

Lebourg, M., Rochina, J. R., Sousa, T., Mano, J., & Ribelles, J. L. G. (2012). Different hyaluronic acid morphology modulates primary articular chondrocyte behavior in hyaluronic acid-coated polycaprolactone scaffolds. Journal of Biomedical Materials Research Part A, 101A(2), 518-527. doi:10.1002/jbm.a.34349

Brittberg, M., Nilsson, A., Lindahl, A., Ohlsson, C., & Peterson, L. (1996). Rabbit Articular Cartilage Defects Treated With Autologous Cultured Chondrocytes. Clinical Orthopaedics and Related Research, 326, 270-283. doi:10.1097/00003086-199605000-00034

Wang, Y., Bian, Y.-Z., Wu, Q., & Chen, G.-Q. (2008). Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials, 29(19), 2858-2868. doi:10.1016/j.biomaterials.2008.03.021

Hunziker, E. B. (2002). Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and Cartilage, 10(6), 432-463. doi:10.1053/joca.2002.0801

Shapiro, F., Koide, S., & Glimcher, M. J. (1993). Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. The Journal of Bone & Joint Surgery, 75(4), 532-553. doi:10.2106/00004623-199304000-00009

Maher, S. A., Doty, S. B., Torzilli, P. A., Thornton, S., Lowman, A. M., Thomas, J. D., … Myers, E. (2007). Nondegradable hydrogels for the treatment of focal cartilage defects. Journal of Biomedical Materials Research Part A, 83A(1), 145-155. doi:10.1002/jbm.a.31255

Hunziker, E. B., Kapfinger, E., & Geiss, J. (2007). The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthritis and Cartilage, 15(4), 403-413. doi:10.1016/j.joca.2006.09.010

Cohen, S. (2003). The use of absorbable co-polymer pads with alginate and cells for articular cartilage repair in rabbits. Biomaterials, 24(15), 2653-2660. doi:10.1016/s0142-9612(03)00058-9

Köse, G. T., Korkusuz, F., Özkul, A., Soysal, Y., Özdemir, T., Yildiz, C., & Hasirci, V. (2005). Tissue engineered cartilage on collagen and PHBV matrices. Biomaterials, 26(25), 5187-5197. doi:10.1016/j.biomaterials.2005.01.037

Dowthwaite, G. P. (2004). The surface of articular cartilage contains a progenitor cell population. Journal of Cell Science, 117(6), 889-897. doi:10.1242/jcs.00912

Grogan, S. P., Barbero, A., Diaz-Romero, J., Cleton-Jansen, A.-M., Soeder, S., Whiteside, R., … Mainil-Varlet, P. (2007). Identification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity. Arthritis & Rheumatism, 56(2), 586-595. doi:10.1002/art.22408

Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98(5), 1076-1084. doi:10.1002/jcb.20886

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record