dc.contributor.author |
Lebourg, Myriam Madeleine
|
es_ES |
dc.contributor.author |
Martínez Díaz, S.
|
es_ES |
dc.contributor.author |
Garcia Giralt, Natalia
|
es_ES |
dc.contributor.author |
Torres Claramunt, R.
|
es_ES |
dc.contributor.author |
Gómez-Tejedor, José Antonio
|
es_ES |
dc.contributor.author |
Gómez Ribelles, José Luís
|
es_ES |
dc.contributor.author |
Vila Canet, G
|
es_ES |
dc.contributor.author |
Monllau, J.C.
|
es_ES |
dc.date.accessioned |
2017-07-20T11:19:43Z |
|
dc.date.available |
2017-07-20T11:19:43Z |
|
dc.date.issued |
2014-05 |
|
dc.identifier.issn |
0885-3282 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/85547 |
|
dc.description.abstract |
Polycaprolactone scaffolds modified with cross-linked hyaluronic acid were prepared in order to establish whether a
more hydrophilic and biomimetic microenvironment benefits the progenitor cells arriving from bone marrow in a cell-
free tissue-engineering approach. The polycaprolactone and polycaprolactone/hyaluronic acid scaffolds were characterized in terms of morphology and water absorption capacity. The polycaprolactone and polycaprolactone/hyaluronic acid samples were implanted in a chondral defect in rabbits; bleeding of the subchondral bone was provoked to generate a spontaneous healing response. Repair at 1, 4, 12, and 24 weeks was assessed macroscopically using the International Cartilage Repair Society score and the Oswestry Arthroscopy Score and microscopically using immunohistological staining for collagen type I and type II, and for Ki-67. The presence of hyaluronic acid improves scaffold performance, which supports a good repair response without biomaterial pre-seeding. |
es_ES |
dc.description.sponsorship |
JLGR, JAGT and JCM acknowledge the support of the Spanish Ministry of Science through projects No. MAT2010-21611-C03-01 and -02. The support of Grant 2005SGR 00762 and 2005SGR 00848 (Catalan Department of Universities, Research and the Information Society) and the Red Tematica de Investigacion Cooperativa en Envejecimiento y Fragilidad (RETICEF) is also acknowledged. Myriam Lebourg acknowledges funding from UPV through the PAID-10 project funds and from CIBER-BBN. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. |
en_EN |
dc.language |
Inglés |
es_ES |
dc.publisher |
SAGE Publications (UK and US) |
es_ES |
dc.relation.ispartof |
Journal of Biomaterials Applications |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Cell-free PCL scaffold |
es_ES |
dc.subject |
Cartilage regeneration |
es_ES |
dc.subject |
Hyaluronic acid |
es_ES |
dc.subject |
Osteoarthritis |
es_ES |
dc.subject |
Tissue engineering |
es_ES |
dc.subject.classification |
MAQUINAS Y MOTORES TERMICOS |
es_ES |
dc.subject.classification |
FISICA APLICADA |
es_ES |
dc.title |
Cell-free cartilage engineering approach using hyaluronic acid-polycaprolactone scaffolds: A study invivo |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1177/0885328213507298 |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/UPV//PAID-06-10/ |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/GC//2005SGR-00848/ |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/GC//2005SGR-00762/ |
|
dc.rights.accessRights |
Cerrado |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny |
es_ES |
dc.description.bibliographicCitation |
Lebourg, MM.; Martínez Díaz, S.; Garcia Giralt, N.; Torres Claramunt, R.; Gómez-Tejedor, JA.; Gómez Ribelles, JL.; Vila Canet, G.... (2014). Cell-free cartilage engineering approach using hyaluronic acid-polycaprolactone scaffolds: A study invivo. Journal of Biomaterials Applications. 28(9):1304-1315. https://doi.org/10.1177/0885328213507298 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://dx.doi.org/10.1177/0885328213507298 |
es_ES |
dc.description.upvformatpinicio |
1304 |
es_ES |
dc.description.upvformatpfin |
1315 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
28 |
es_ES |
dc.description.issue |
9 |
es_ES |
dc.relation.senia |
282362 |
es_ES |
dc.contributor.funder |
Ministerio de Ciencia e Innovación |
|
dc.contributor.funder |
Generalitat de Catalunya |
|
dc.contributor.funder |
Red Tematica de Investigacion Cooperativa en Envejecimiento y Fragilidad |
|
dc.contributor.funder |
Universitat Politècnica de València |
|
dc.contributor.funder |
Instituto de Salud Carlos III |
|
dc.contributor.funder |
European Regional Development Fund |
|
dc.contributor.funder |
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina |
es_ES |
dc.description.references |
Van der Kraan, P. M., Buma, P., van Kuppevelt, T., & van Den Berg, W. B. (2002). Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis and Cartilage, 10(8), 631-637. doi:10.1053/joca.2002.0806 |
es_ES |
dc.description.references |
Martinez-Diaz, S., Garcia-Giralt, N., Lebourg, M., Gómez-Tejedor, J.-A., Vila, G., Caceres, E., … Monllau, J. C. (2010). In Vivo Evaluation of 3-Dimensional Polycaprolactone Scaffolds for Cartilage Repair in Rabbits. The American Journal of Sports Medicine, 38(3), 509-519. doi:10.1177/0363546509352448 |
es_ES |
dc.description.references |
Patti, A. M., Gabriele, A., Vulcano, A., Ramieri, M. T., & Della Rocca, C. (2001). Effect of hyaluronic acid on human chondrocyte cell lines from articular cartilage. Tissue and Cell, 33(3), 294-300. doi:10.1054/tice.2001.0178 |
es_ES |
dc.description.references |
Yoo, H. S., Lee, E. A., Yoon, J. J., & Park, T. G. (2005). Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials, 26(14), 1925-1933. doi:10.1016/j.biomaterials.2004.06.021 |
es_ES |
dc.description.references |
Grigolo, B., De Franceschi, L., Roseti, L., Cattini, L., & Facchini, A. (2005). Down regulation of degenerative cartilage molecules in chondrocytes grown on a hyaluronan-based scaffold. Biomaterials, 26(28), 5668-5676. doi:10.1016/j.biomaterials.2005.02.030 |
es_ES |
dc.description.references |
Girotto, D., Urbani, S., Brun, P., Renier, D., Barbucci, R., & Abatangelo, G. (2003). Tissue-specific gene expression in chondrocytes grown on three-dimensional hyaluronic acid scaffolds. Biomaterials, 24(19), 3265-3275. doi:10.1016/s0142-9612(03)00160-1 |
es_ES |
dc.description.references |
Brun, P., Panfilo, S., Daga Gordini, D., Cortivo, R., & Abatangelo, G. (2003). The effect of hyaluronan on CD44-mediated survival of normal and hydroxyl radical-damaged chondrocytes. Osteoarthritis and Cartilage, 11(3), 208-216. doi:10.1016/s1063-4584(02)00352-7 |
es_ES |
dc.description.references |
Ho, M.-H., Kuo, P.-Y., Hsieh, H.-J., Hsien, T.-Y., Hou, L.-T., Lai, J.-Y., & Wang, D.-M. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 25(1), 129-138. doi:10.1016/s0142-9612(03)00483-6 |
es_ES |
dc.description.references |
Peterson, L., Minas, T., Brittberg, M., Nilsson, A., Sj??gren-Jansson, E., & Lindahl, A. (2000). Two- to 9-Year Outcome After Autologous Chondrocyte Transplantation of the Knee. Clinical Orthopaedics and Related Research, 374, 212-234. doi:10.1097/00003086-200005000-00020 |
es_ES |
dc.description.references |
Smith, G. D., Taylor, J., Almqvist, K. F., Erggelet, C., Knutsen, G., Portabella, M. G., … Richardson, J. B. (2005). Arthroscopic Assessment of Cartilage Repair: A Validation Study of 2 Scoring Systems. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 21(12), 1462-1467. doi:10.1016/j.arthro.2005.09.007 |
es_ES |
dc.description.references |
Van den Borne, M. P. J., Raijmakers, N. J. H., Vanlauwe, J., Victor, J., de Jong, S. N., Bellemans, J., & Saris, D. B. F. (2007). International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis and Cartilage, 15(12), 1397-1402. doi:10.1016/j.joca.2007.05.005 |
es_ES |
dc.description.references |
Trzeciak, T., Kruczyński, J., Jaroszewski, J., & Lubiatowski, P. (2006). Evaluation of Cartilage Reconstruction by Means of Autologous Chondrocyte Versus Periosteal Graft Transplantation: An Animal Study. Transplantation Proceedings, 38(1), 305-311. doi:10.1016/j.transproceed.2005.12.028 |
es_ES |
dc.description.references |
Ito, S., Sato, M., Yamato, M., Mitani, G., Kutsuna, T., Nagai, T., … Mochida, J. (2012). Repair of articular cartilage defect with layered chondrocyte sheets and cultured synovial cells. Biomaterials, 33(21), 5278-5286. doi:10.1016/j.biomaterials.2012.03.073 |
es_ES |
dc.description.references |
Lebourg, M., Rochina, J. R., Sousa, T., Mano, J., & Ribelles, J. L. G. (2012). Different hyaluronic acid morphology modulates primary articular chondrocyte behavior in hyaluronic acid-coated polycaprolactone scaffolds. Journal of Biomedical Materials Research Part A, 101A(2), 518-527. doi:10.1002/jbm.a.34349 |
es_ES |
dc.description.references |
Brittberg, M., Nilsson, A., Lindahl, A., Ohlsson, C., & Peterson, L. (1996). Rabbit Articular Cartilage Defects Treated With Autologous Cultured Chondrocytes. Clinical Orthopaedics and Related Research, 326, 270-283. doi:10.1097/00003086-199605000-00034 |
es_ES |
dc.description.references |
Wang, Y., Bian, Y.-Z., Wu, Q., & Chen, G.-Q. (2008). Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials, 29(19), 2858-2868. doi:10.1016/j.biomaterials.2008.03.021 |
es_ES |
dc.description.references |
Hunziker, E. B. (2002). Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and Cartilage, 10(6), 432-463. doi:10.1053/joca.2002.0801 |
es_ES |
dc.description.references |
Shapiro, F., Koide, S., & Glimcher, M. J. (1993). Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. The Journal of Bone & Joint Surgery, 75(4), 532-553. doi:10.2106/00004623-199304000-00009 |
es_ES |
dc.description.references |
Maher, S. A., Doty, S. B., Torzilli, P. A., Thornton, S., Lowman, A. M., Thomas, J. D., … Myers, E. (2007). Nondegradable hydrogels for the treatment of focal cartilage defects. Journal of Biomedical Materials Research Part A, 83A(1), 145-155. doi:10.1002/jbm.a.31255 |
es_ES |
dc.description.references |
Hunziker, E. B., Kapfinger, E., & Geiss, J. (2007). The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthritis and Cartilage, 15(4), 403-413. doi:10.1016/j.joca.2006.09.010 |
es_ES |
dc.description.references |
Cohen, S. (2003). The use of absorbable co-polymer pads with alginate and cells for articular cartilage repair in rabbits. Biomaterials, 24(15), 2653-2660. doi:10.1016/s0142-9612(03)00058-9 |
es_ES |
dc.description.references |
Köse, G. T., Korkusuz, F., Özkul, A., Soysal, Y., Özdemir, T., Yildiz, C., & Hasirci, V. (2005). Tissue engineered cartilage on collagen and PHBV matrices. Biomaterials, 26(25), 5187-5197. doi:10.1016/j.biomaterials.2005.01.037 |
es_ES |
dc.description.references |
Dowthwaite, G. P. (2004). The surface of articular cartilage contains a progenitor cell population. Journal of Cell Science, 117(6), 889-897. doi:10.1242/jcs.00912 |
es_ES |
dc.description.references |
Grogan, S. P., Barbero, A., Diaz-Romero, J., Cleton-Jansen, A.-M., Soeder, S., Whiteside, R., … Mainil-Varlet, P. (2007). Identification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity. Arthritis & Rheumatism, 56(2), 586-595. doi:10.1002/art.22408 |
es_ES |
dc.description.references |
Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98(5), 1076-1084. doi:10.1002/jcb.20886 |
es_ES |