- -

Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case

Mostrar el registro completo del ítem

Boada Acosta, YF.; Reynoso Meza, G.; Picó Marco, JA.; Vignoni, A. (2016). Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case. BMC Systems Biology. 10:1-19. https://doi.org/10.1186/s12918-016-0269-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/85661

Ficheros en el ítem

Metadatos del ítem

Título: Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case
Autor: Boada Acosta, Yadira Fernanda Reynoso Meza, Gilberto Picó Marco, Jesús Andrés Vignoni, Alejandro
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial
Fecha difusión:
Resumen:
Background: Model based design plays a fundamental role in synthetic biology. Exploiting modularity, i.e. using biological parts and interconnecting them to build new and more complex biological circuits is one of the key ...[+]
Palabras clave: Biological circuits , Dynamic behavior , Multi-objective optimization , Kinetic parameters , Biological tuning knobs
Derechos de uso: Reconocimiento (by)
Fuente:
BMC Systems Biology. (issn: 1752-0509 )
DOI: 10.1186/s12918-016-0269-0
Editorial:
BioMed Central
Versión del editor: http://doi.org/10.1186/s12918-016-0269-0
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2014-55276-C5-1-R/ES/BIOLOGIA SINTETICA PARA LA MEJORA EN BIOPRODUCCION: DISEÑO, OPTIMIZACION, MONITORIZACION Y CONTROL/
info:eu-repo/grantAgreement/UPV//FPI-2013-3242/
info:eu-repo/grantAgreement/CNPq//BJT-304804%2F2014-2/
info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-01/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES./
Agradecimientos:
Research in this area is partially supported by Spanish government and European Union (FEDER-CICYT DPI2011-28112-C04-01, and DPI2014-55276-C5-1-R). Yadira Boada thanks grant FPI/2013-3242 of Universitat Politecnica de ...[+]
Tipo: Artículo

References

ERASynBio. Next steps for european synthetic biology: a strategic vision from erasynbio. Report, ERASynBio. 2014. https://www.erasynbio.eu/lw_resource/datapool/_items/item_58/erasynbiostrategicvision.pdf .

Way J, Collins J, Keasling J, Silver P. Integrating biological redesign: Where synthetic biology came from and where it needs to go. Cell. 2014; 157(1):151–61.

Canton B, Labno A, Endy D. Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol. 2008; 26(7):787–93. [+]
ERASynBio. Next steps for european synthetic biology: a strategic vision from erasynbio. Report, ERASynBio. 2014. https://www.erasynbio.eu/lw_resource/datapool/_items/item_58/erasynbiostrategicvision.pdf .

Way J, Collins J, Keasling J, Silver P. Integrating biological redesign: Where synthetic biology came from and where it needs to go. Cell. 2014; 157(1):151–61.

Canton B, Labno A, Endy D. Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol. 2008; 26(7):787–93.

De Lorenzo V, Danchin A. Synthetic biology: discovering new worlds and new words. EMBO Rep. 2008; 9(9):822–7.

Church GM, Elowitz MB, Smolke CD, Voigt CA, Weiss R. Realizing the potential of synthetic biology. Nat Rev Mol Cell Biol. 2014; 15(4):289–94.

Takahashi CN, Miller AW, Ekness F, Dunham MJ, Klavins E. A low cost, customizable turbidostat for use in synthetic circuit characterization. ACS Synth Biol. 2015; 4(1):32–8. [doi: 10.1021/sb500165g ].

Cooling MT, Rouilly V, Misirli G, Lawson J, Yu T, Hallinan J, Wipat A. Standard virtual biological parts: a repository of modular modeling components for synthetic biology. Bioinformatics. 2010; 26(7):925–31.

Medema MH, van Raaphorst R, Takano E, Breitling R. Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol. 2012; 10(3):191–202.

Marchisio MA, Stelling J. Automatic design of digital synthetic gene circuits. PLoS Comput Biol. 2011; 7(2):e1001083. [doi: 10.1371/journal.pcbi.1001083 ].

Rodrigo G, Carrera J, Landrain TE, Jaramillo A. Perspectives on the automatic design of regulatory systems for synthetic biology. FEBS Lett. 2012; 586(15):2037–42.

Crook N, Alper HS. Model-based design of synthetic, biological systems. Chem Eng Sci. 2013; 103:2–11.

Jayanthi S, Nilgiriwala K, Del Vecchio D. Retroactivity controls the temporal dynamics of gene transcription. ACS Synth Biol. 2013; 2(8):431–41.

Mélykúti B, Hespanha JP, Khammash M. Equilibrium distributions of simple biochemical reaction systems for time-scale separation in stochastic reaction networks. J R Soc Interface. 2014; 11(97):20140054.

Oyarzún DA, Lugagne JB, Stan GB. Noise propagation in synthetic gene circuits for metabolic control. ACS Synth Biol. 2015; 4(2):116–25. [doi: 10.1021/sb400126a ].

Picó J, Vignoni A, Picó-Marco E, Boada Y. Modelado de sistemas bioquímicos: De la ley de acción de masas a la aproximación lineal del ruido. Revista Iberoamericana de Automática e Informática Industrial RIAI. 2015; 12(3):241–52.

Feng X-j-J, Hooshangi S, Chen D, Li G, Weiss R, Rabitz H. Optimizing genetic circuits by global sensitivity analysis. Biophys J. 2004; 87(4):2195–202.

Dasika MS, Maranas CD. Optcircuit: An optimization based method for computational design of genetic circuits. BMC Syst Biol. 2008; 2:24.

Rodrigo G, Carrera J, Jaramillo A. Genetdes. Bioinformatics. 2007; 23(14):1857–8.

Otero-Muras I, Banga JR. Multicriteria global optimization for biocircuit design. 2014. arXiv preprint arXiv:1402.7323.

Banga JR. Optimization in computational systems biology. BMC Syst Biol. 2008; 2:47.

Sendin J, Exler O, Banga JR. Multi-objective mixed integer strategy for the optimisation of biological networks. IET Syst Biol. 2010; 4(3):236–48.

Miller M, Hafner M, Sontag E, Davidsohn N, Subramanian S, Purnick PE, Lauffenburger D, Weiss R. Modular design of artificial tissue homeostasis: robust control through synthetic cellular heterogeneity. PLoS Comput Biol. 2012; 8(7):1002579.

Ellis T, Wang X, Collins JJ. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat Biotechnol. 2009; 27(5):465–71.

Koeppl H, Hafner M, Lu J. Mapping behavioral specifications to model parameters in synthetic biology. BMC Bioinforma. 2013; 14(Suppl 10):9.

Chiang AWT, Hwang M-JJ. A computational pipeline for identifying kinetic motifs to aid in the design and improvement of synthetic gene circuits. BMC Bioinforma. 2013; 14 Suppl 16:5.

Ma W, Trusina A, El-Samad H, Lim WA, Tang C. Defining network topologies that can achieve biochemical adaptation. Cell. 2009; 138(4):760–73.

Chiang AWT, Liu W-CC, Charusanti P, Hwang M-JJ. Understanding system dynamics of an adaptive enzyme network from globally profiled kinetic parameters. BMC Syst Biol. 2014; 8:4.

Reynoso-Meza G, Blasco X, Sanchis J, Martínez M. Controller tuning using evolutionary multi-objective optimisation: current trends and applications. Control Eng Pract. 2014; 28:58–73.

Alon U. An Introduction To Systems Biology. Design Principles of Biological Circuits. London: Chapman & Hall/ CRC Mathematical and computational Biology Series; 2006.

Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature. 2000; 403(6767):335–8.

Hsiao V, de los Santos ELC, Whitaker WR, Dueber JE, Murray RM. Design and implementation of a biomolecular concentration tracker. ACS Synth Biol. 2015; 4(2):150–61. [doi: 10.1021/sb500024b ].

Franco E, Giordano G, Forsberg P-O, Murray RM. Negative autoregulation matches production and demand in synthetic transcriptional networks. ACS Synth Biol. 2014; 3(8):589–99. [doi: 10.1021/sb400157z ].

Strelkowa N, Barahona M. Switchable genetic oscillator operating in quasi-stable mode. J R Soc Interface. 2010; 7(48):1071–82.

Basu S, Mehreja R, Thiberge S, Chen MT, Weiss R. Spatiotemporal control of gene expression with pulse-generating networks. Proc Natl Acad Sci U S A. 2004; 101(17):6355–60.

Bleris L, Xie Z, Glass D, Adadey A, Sontag E, Benenson Y. Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template. Mol Syst Biol. 2011; 7(519):1–12. [doi: 10.1038/msb.2011.49 ].

Hart Y, Antebi YE, Mayo AE, Friedman N, Alon U. Design principles of cell circuits with paradoxical components. Proc Natl Acad Sci. 2012; 109(21):8346–51.

Zhang Q, Bhattacharya S, Andersen ME. Ultrasensitive response motifs: basic amplifiers in molecular signalling networks. Open Biol. 2013; 3(4):130031.

Weber M, Buceta J, Others. Dynamics of the quorum sensing switch: stochastic and non-stationary effects. BMC Syst Biol. 2013; 7(1):6.

Womelsdorf T, Valiante TA, Sahin NT, Miller KJ, Tiesinga P. Dynamic circuit motifs underlying rhythmic gain control, gating and integration. Nat Neurosci. 2014; 17(8):1031–9.

Arpino JAJ, Hancock EJ, Anderson J, Barahona M, Stan G-BVB, Papachristodoulou A, Polizzi K. Tuning the dials of synthetic biology. Microbiology. 2013; 159(Pt 7):1236–53.

Zagaris A, Kaper HGG, Kaper TJJ. Analysis of the computational singular perturbation reduction method for chemical kinetics. J Nonlinear Sci. 2004; 14(1):59–91.

Anderson J, Chang Y-C-C, Papachristodoulou A. Model decomposition and reduction tools for large-scale networks in systems biology. Automatica. 2011; 47(6):1165–74.

Prescott TP, Papachristodoulou A. Layered decomposition for the model order reduction of timescale separated biochemical reaction networks. J Theor Biol. 2014; 356:113–22.

Hancock EJ, Stan GB, Arpino JAJ, Papachristodoulou A. Simplified mechanistic models of gene regulation for analysis and design. J R Soc Interface. 2015; 12(108).

Miettinen K, Vol. 12. Nonlinear Multiobjective Optimization. Boston: Kluwer Academic Publishers; 1999.

Miettinen K, Ruiz F, Wierzbicki AP. Introduction to multiobjective optimization: interactive approaches. In: Multiobjective Optimization. Berlin: Springer: 2008. p. 27–57.

Deb K, Bandaru S, Greiner D, Gaspar-Cunha A, Tutum CC. An integrated approach to automated innovization for discovering useful design principles: Case studies from engineering. Appl Soft Comput. 2014; 15(0):42–56.

Ang J, Ingalls B, McMillen D. Probing the input-output behavior of biochemical and genetic systems: System identification methods from control theory In: Johnson ML, Brand L, editors. Methods in Enzymology. Academic Press: 2011. p. 279–317, doi: 10.1016/B978-0-12-381270-4.00010-X .

Mattson CA, Messac A. Pareto frontier based concept selection under uncertainty, with visualization. Optim Eng. 2005; 6(1):85–115.

Reynoso-Meza G, Sanchis J, Blasco X, Martínez M. Design of continuous controllers using a multiobjective differential evolution algorithm with spherical pruning. Appl Evol Comput. 2010;532–541.

Reynoso-Meza G, García-Nieto S, Sanchis J, Blasco X. Controller tuning using multiobjective optimization algorithms: a global tuning framework. IEEE Trans Control Syst Technol. 2013; 21(2):445–58.

Reynoso-Meza G, Sanchis J, Blasco X, Herrero JM. Multiobjective evolutionary algortihms for multivariable PI controller tuning. Expert Syst Appl. 2012; 39:7895–907.

Anderson C. Anderson promoter collection [online]. 2006. http://parts.igem.org/Promoters/Catalog/Anderson . Accesed 20 Feb 2015.

Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol. 2009; 27(10):946–50.

Egbert RG, Klavins E. Fine-tuning gene networks using simple sequence repeats. PNAS. 2012; 109(42):16817–22. [doi: 10.1073/pnas.1205693109 ].

Hair JF, Suárez MG. Análisis Multivariante vol. 491. Madrid: Prentice Hall; 1999.

Blasco X, Herrero JM, Sanchis J, Martínez M. A new graphical visualization of n-dimensional pareto front for decision-making in multiobjective optimization. Inf Sci. 2008; 178(20):3908–24. [doi: 10.1016/j.ins.2008.06.010 ].

Reynoso-Meza G, Blasco X, Sanchis J, Herrero JM. Comparison of design concepts in multi-criteria decision-making using level diagrams. Inform Sci. 2013; 221:124–41.

Goentoro L, Shoval O, Kirschner MW, Alon U. The incoherent feedforward loop can provide fold-change detection in gene regulation. Mol Cell. 2009; 36(5):894–9.

Rodrigo G, Elena SF. Structural discrimination of robustness in transcriptional feedforward loops for pattern formation. PloS ONE. 2011; 6(2):16904.

Kim J, Khetarpal I, Sen S, Murray RM. Synthetic circuit for exact adaptation and fold-change detection. Nucleic Acids Res. 2014; 42(2):6078–89. [doi: 10.1093/nar/gku233 ].

Chelliah V, Juty N, Ajmera I, Ali R, Dumousseau M, Glont M, Hucka M, Jalowicki G, Keating S, Knight-Schrijver V, et al. Biomodels: ten-year anniversary. Nucleic Acids Res. 2015; 43(D1):542–8.

Ang J, Bagh S, Ingalls BP, McMillen DR. Considerations for using integral feedback control to construct a perfectly adapting synthetic gene network. J Theor Biol. 2010; 266(4):723–38.

Biobrick Foundation. 2006. Part Registry [online]. http://partsregistry.org/ . Accessed 20 Feb 2015.

BIOSS. 2006. BIOSS Toolbox [online]. http://www.bioss.uni-freiburg.de/cms/toolbox-home.html . Accessed 20 Feb 2015.

BioFab. 2006. International Open Facility Advancing Biotechnology [online]. http://www.biofab.org/ . Accessed 20 Feb 2015.

Vallerio M, Hufkens J, Van Impe J, Logist F. An interactive decision-support system for multi-objective optimization of nonlinear dynamic processes with uncertainty. Expert Syst Appl. 2015; 42(21):7710–31.

Frangopol DM, Maute K. Life-cycle reliability-based optimization of civil and aerospace structures. Comput Struct. 2003; 81(7):397–410.

Lozano M, Molina D, Herrera F. Editorial scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems. Soft Comput. 2011; 15(11):2085–7.

Santana-Quintero LV, Montano AA, Coello CAC. A review of techniques for handling expensive functions in evolutionary multi-objective optimization. In: Computational Intelligence in Expensive Optimization Problems. Berlin: Springer: 2010. p. 29–59.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem