- -

Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case

Show simple item record

Files in this item

dc.contributor.author Boada Acosta, Yadira Fernanda es_ES
dc.contributor.author Reynoso Meza, Gilberto es_ES
dc.contributor.author Picó Marco, Jesús Andrés es_ES
dc.contributor.author Vignoni, Alejandro es_ES
dc.date.accessioned 2017-07-24T12:48:34Z
dc.date.available 2017-07-24T12:48:34Z
dc.date.issued 2016-03-11
dc.identifier.issn 1752-0509
dc.identifier.uri http://hdl.handle.net/10251/85661
dc.description.abstract Background: Model based design plays a fundamental role in synthetic biology. Exploiting modularity, i.e. using biological parts and interconnecting them to build new and more complex biological circuits is one of the key issues. In this context, mathematical models have been used to generate predictions of the behavior of the designed device. Designers not only want the ability to predict the circuit behavior once all its components have been determined, but also to help on the design and selection of its biological parts, i.e. to provide guidelines for the experimental implementation. This is tantamount to obtaining proper values of the model parameters, for the circuit behavior results from the interplay between model structure and parameters tuning. However, determining crisp values for parameters of the involved parts is not a realistic approach. Uncertainty is ubiquitous to biology, and the characterization of biological parts is not exempt from it. Moreover, the desired dynamical behavior for the designed circuit usually results from a trade-off among several goals to be optimized. Results: We propose the use of a multi-objective optimization tuning framework to get a model-based set of guidelines for the selection of the kinetic parameters required to build a biological device with desired behavior. The design criteria are encoded in the formulation of the objectives and optimization problem itself. As a result, on the one hand the designer obtains qualitative regions/intervals of values of the circuit parameters giving rise to the predefined circuit behavior; on the other hand, he obtains useful information for its guidance in the implementation process. These parameters are chosen so that they can effectively be tuned at the wet-lab, i.e. they are effective biological tuning knobs. To show the proposed approach, the methodology is applied to the design of a well known biological circuit: a genetic incoherent feed-forward circuit showing adaptive behavior. Conclusion: The proposed multi-objective optimization design framework is able to provide effective guidelines to tune biological parameters so as to achieve a desired circuit behavior. Moreover, it is easy to analyze the impact of the context on the synthetic device to be designed. That is, one can analyze how the presence of a downstream load influences the performance of the designed circuit, and take it into account. es_ES
dc.description.sponsorship Research in this area is partially supported by Spanish government and European Union (FEDER-CICYT DPI2011-28112-C04-01, and DPI2014-55276-C5-1-R). Yadira Boada thanks grant FPI/2013-3242 of Universitat Politecnica de Valencia; Gilberto Reynoso-Meza gratefully acknowledges the partial support provided by the postdoctoral fellowship BJT-304804/2014-2 from the National Council of Scientific and Technologic Development of Brazil (CNPq) for the development of this work. We are grateful to Alejandra Gonzalez-Bosca for her collaboration on this topic while doing her Bachelor thesis, and to Dr. Jose Luis Pitarch from Universidad de Valladolid for his advise in algorithmic implementations and for proof reading the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof BMC Systems Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Biological circuits es_ES
dc.subject Dynamic behavior es_ES
dc.subject Multi-objective optimization es_ES
dc.subject Kinetic parameters es_ES
dc.subject Biological tuning knobs es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12918-016-0269-0
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2014-55276-C5-1-R/ES/BIOLOGIA SINTETICA PARA LA MEJORA EN BIOPRODUCCION: DISEÑO, OPTIMIZACION, MONITORIZACION Y CONTROL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-2013-3242/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//BJT-304804%2F2014-2/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-01/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial es_ES
dc.description.bibliographicCitation Boada Acosta, YF.; Reynoso Meza, G.; Picó Marco, JA.; Vignoni, A. (2016). Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case. BMC Systems Biology. 10:1-19. https://doi.org/10.1186/s12918-016-0269-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1186/s12918-016-0269-0 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.relation.senia 320014 es_ES
dc.identifier.pmid 26968941 en_EN
dc.identifier.pmcid PMC4788947 en_EN
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references ERASynBio. Next steps for european synthetic biology: a strategic vision from erasynbio. Report, ERASynBio. 2014. https://www.erasynbio.eu/lw_resource/datapool/_items/item_58/erasynbiostrategicvision.pdf . es_ES
dc.description.references Way J, Collins J, Keasling J, Silver P. Integrating biological redesign: Where synthetic biology came from and where it needs to go. Cell. 2014; 157(1):151–61. es_ES
dc.description.references Canton B, Labno A, Endy D. Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol. 2008; 26(7):787–93. es_ES
dc.description.references De Lorenzo V, Danchin A. Synthetic biology: discovering new worlds and new words. EMBO Rep. 2008; 9(9):822–7. es_ES
dc.description.references Church GM, Elowitz MB, Smolke CD, Voigt CA, Weiss R. Realizing the potential of synthetic biology. Nat Rev Mol Cell Biol. 2014; 15(4):289–94. es_ES
dc.description.references Takahashi CN, Miller AW, Ekness F, Dunham MJ, Klavins E. A low cost, customizable turbidostat for use in synthetic circuit characterization. ACS Synth Biol. 2015; 4(1):32–8. [doi: 10.1021/sb500165g ]. es_ES
dc.description.references Cooling MT, Rouilly V, Misirli G, Lawson J, Yu T, Hallinan J, Wipat A. Standard virtual biological parts: a repository of modular modeling components for synthetic biology. Bioinformatics. 2010; 26(7):925–31. es_ES
dc.description.references Medema MH, van Raaphorst R, Takano E, Breitling R. Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol. 2012; 10(3):191–202. es_ES
dc.description.references Marchisio MA, Stelling J. Automatic design of digital synthetic gene circuits. PLoS Comput Biol. 2011; 7(2):e1001083. [doi: 10.1371/journal.pcbi.1001083 ]. es_ES
dc.description.references Rodrigo G, Carrera J, Landrain TE, Jaramillo A. Perspectives on the automatic design of regulatory systems for synthetic biology. FEBS Lett. 2012; 586(15):2037–42. es_ES
dc.description.references Crook N, Alper HS. Model-based design of synthetic, biological systems. Chem Eng Sci. 2013; 103:2–11. es_ES
dc.description.references Jayanthi S, Nilgiriwala K, Del Vecchio D. Retroactivity controls the temporal dynamics of gene transcription. ACS Synth Biol. 2013; 2(8):431–41. es_ES
dc.description.references Mélykúti B, Hespanha JP, Khammash M. Equilibrium distributions of simple biochemical reaction systems for time-scale separation in stochastic reaction networks. J R Soc Interface. 2014; 11(97):20140054. es_ES
dc.description.references Oyarzún DA, Lugagne JB, Stan GB. Noise propagation in synthetic gene circuits for metabolic control. ACS Synth Biol. 2015; 4(2):116–25. [doi: 10.1021/sb400126a ]. es_ES
dc.description.references Picó J, Vignoni A, Picó-Marco E, Boada Y. Modelado de sistemas bioquímicos: De la ley de acción de masas a la aproximación lineal del ruido. Revista Iberoamericana de Automática e Informática Industrial RIAI. 2015; 12(3):241–52. es_ES
dc.description.references Feng X-j-J, Hooshangi S, Chen D, Li G, Weiss R, Rabitz H. Optimizing genetic circuits by global sensitivity analysis. Biophys J. 2004; 87(4):2195–202. es_ES
dc.description.references Dasika MS, Maranas CD. Optcircuit: An optimization based method for computational design of genetic circuits. BMC Syst Biol. 2008; 2:24. es_ES
dc.description.references Rodrigo G, Carrera J, Jaramillo A. Genetdes. Bioinformatics. 2007; 23(14):1857–8. es_ES
dc.description.references Otero-Muras I, Banga JR. Multicriteria global optimization for biocircuit design. 2014. arXiv preprint arXiv:1402.7323. es_ES
dc.description.references Banga JR. Optimization in computational systems biology. BMC Syst Biol. 2008; 2:47. es_ES
dc.description.references Sendin J, Exler O, Banga JR. Multi-objective mixed integer strategy for the optimisation of biological networks. IET Syst Biol. 2010; 4(3):236–48. es_ES
dc.description.references Miller M, Hafner M, Sontag E, Davidsohn N, Subramanian S, Purnick PE, Lauffenburger D, Weiss R. Modular design of artificial tissue homeostasis: robust control through synthetic cellular heterogeneity. PLoS Comput Biol. 2012; 8(7):1002579. es_ES
dc.description.references Ellis T, Wang X, Collins JJ. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat Biotechnol. 2009; 27(5):465–71. es_ES
dc.description.references Koeppl H, Hafner M, Lu J. Mapping behavioral specifications to model parameters in synthetic biology. BMC Bioinforma. 2013; 14(Suppl 10):9. es_ES
dc.description.references Chiang AWT, Hwang M-JJ. A computational pipeline for identifying kinetic motifs to aid in the design and improvement of synthetic gene circuits. BMC Bioinforma. 2013; 14 Suppl 16:5. es_ES
dc.description.references Ma W, Trusina A, El-Samad H, Lim WA, Tang C. Defining network topologies that can achieve biochemical adaptation. Cell. 2009; 138(4):760–73. es_ES
dc.description.references Chiang AWT, Liu W-CC, Charusanti P, Hwang M-JJ. Understanding system dynamics of an adaptive enzyme network from globally profiled kinetic parameters. BMC Syst Biol. 2014; 8:4. es_ES
dc.description.references Reynoso-Meza G, Blasco X, Sanchis J, Martínez M. Controller tuning using evolutionary multi-objective optimisation: current trends and applications. Control Eng Pract. 2014; 28:58–73. es_ES
dc.description.references Alon U. An Introduction To Systems Biology. Design Principles of Biological Circuits. London: Chapman & Hall/ CRC Mathematical and computational Biology Series; 2006. es_ES
dc.description.references Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature. 2000; 403(6767):335–8. es_ES
dc.description.references Hsiao V, de los Santos ELC, Whitaker WR, Dueber JE, Murray RM. Design and implementation of a biomolecular concentration tracker. ACS Synth Biol. 2015; 4(2):150–61. [doi: 10.1021/sb500024b ]. es_ES
dc.description.references Franco E, Giordano G, Forsberg P-O, Murray RM. Negative autoregulation matches production and demand in synthetic transcriptional networks. ACS Synth Biol. 2014; 3(8):589–99. [doi: 10.1021/sb400157z ]. es_ES
dc.description.references Strelkowa N, Barahona M. Switchable genetic oscillator operating in quasi-stable mode. J R Soc Interface. 2010; 7(48):1071–82. es_ES
dc.description.references Basu S, Mehreja R, Thiberge S, Chen MT, Weiss R. Spatiotemporal control of gene expression with pulse-generating networks. Proc Natl Acad Sci U S A. 2004; 101(17):6355–60. es_ES
dc.description.references Bleris L, Xie Z, Glass D, Adadey A, Sontag E, Benenson Y. Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template. Mol Syst Biol. 2011; 7(519):1–12. [doi: 10.1038/msb.2011.49 ]. es_ES
dc.description.references Hart Y, Antebi YE, Mayo AE, Friedman N, Alon U. Design principles of cell circuits with paradoxical components. Proc Natl Acad Sci. 2012; 109(21):8346–51. es_ES
dc.description.references Zhang Q, Bhattacharya S, Andersen ME. Ultrasensitive response motifs: basic amplifiers in molecular signalling networks. Open Biol. 2013; 3(4):130031. es_ES
dc.description.references Weber M, Buceta J, Others. Dynamics of the quorum sensing switch: stochastic and non-stationary effects. BMC Syst Biol. 2013; 7(1):6. es_ES
dc.description.references Womelsdorf T, Valiante TA, Sahin NT, Miller KJ, Tiesinga P. Dynamic circuit motifs underlying rhythmic gain control, gating and integration. Nat Neurosci. 2014; 17(8):1031–9. es_ES
dc.description.references Arpino JAJ, Hancock EJ, Anderson J, Barahona M, Stan G-BVB, Papachristodoulou A, Polizzi K. Tuning the dials of synthetic biology. Microbiology. 2013; 159(Pt 7):1236–53. es_ES
dc.description.references Zagaris A, Kaper HGG, Kaper TJJ. Analysis of the computational singular perturbation reduction method for chemical kinetics. J Nonlinear Sci. 2004; 14(1):59–91. es_ES
dc.description.references Anderson J, Chang Y-C-C, Papachristodoulou A. Model decomposition and reduction tools for large-scale networks in systems biology. Automatica. 2011; 47(6):1165–74. es_ES
dc.description.references Prescott TP, Papachristodoulou A. Layered decomposition for the model order reduction of timescale separated biochemical reaction networks. J Theor Biol. 2014; 356:113–22. es_ES
dc.description.references Hancock EJ, Stan GB, Arpino JAJ, Papachristodoulou A. Simplified mechanistic models of gene regulation for analysis and design. J R Soc Interface. 2015; 12(108). es_ES
dc.description.references Miettinen K, Vol. 12. Nonlinear Multiobjective Optimization. Boston: Kluwer Academic Publishers; 1999. es_ES
dc.description.references Miettinen K, Ruiz F, Wierzbicki AP. Introduction to multiobjective optimization: interactive approaches. In: Multiobjective Optimization. Berlin: Springer: 2008. p. 27–57. es_ES
dc.description.references Deb K, Bandaru S, Greiner D, Gaspar-Cunha A, Tutum CC. An integrated approach to automated innovization for discovering useful design principles: Case studies from engineering. Appl Soft Comput. 2014; 15(0):42–56. es_ES
dc.description.references Ang J, Ingalls B, McMillen D. Probing the input-output behavior of biochemical and genetic systems: System identification methods from control theory In: Johnson ML, Brand L, editors. Methods in Enzymology. Academic Press: 2011. p. 279–317, doi: 10.1016/B978-0-12-381270-4.00010-X . es_ES
dc.description.references Mattson CA, Messac A. Pareto frontier based concept selection under uncertainty, with visualization. Optim Eng. 2005; 6(1):85–115. es_ES
dc.description.references Reynoso-Meza G, Sanchis J, Blasco X, Martínez M. Design of continuous controllers using a multiobjective differential evolution algorithm with spherical pruning. Appl Evol Comput. 2010;532–541. es_ES
dc.description.references Reynoso-Meza G, García-Nieto S, Sanchis J, Blasco X. Controller tuning using multiobjective optimization algorithms: a global tuning framework. IEEE Trans Control Syst Technol. 2013; 21(2):445–58. es_ES
dc.description.references Reynoso-Meza G, Sanchis J, Blasco X, Herrero JM. Multiobjective evolutionary algortihms for multivariable PI controller tuning. Expert Syst Appl. 2012; 39:7895–907. es_ES
dc.description.references Anderson C. Anderson promoter collection [online]. 2006. http://parts.igem.org/Promoters/Catalog/Anderson . Accesed 20 Feb 2015. es_ES
dc.description.references Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol. 2009; 27(10):946–50. es_ES
dc.description.references Egbert RG, Klavins E. Fine-tuning gene networks using simple sequence repeats. PNAS. 2012; 109(42):16817–22. [doi: 10.1073/pnas.1205693109 ]. es_ES
dc.description.references Hair JF, Suárez MG. Análisis Multivariante vol. 491. Madrid: Prentice Hall; 1999. es_ES
dc.description.references Blasco X, Herrero JM, Sanchis J, Martínez M. A new graphical visualization of n-dimensional pareto front for decision-making in multiobjective optimization. Inf Sci. 2008; 178(20):3908–24. [doi: 10.1016/j.ins.2008.06.010 ]. es_ES
dc.description.references Reynoso-Meza G, Blasco X, Sanchis J, Herrero JM. Comparison of design concepts in multi-criteria decision-making using level diagrams. Inform Sci. 2013; 221:124–41. es_ES
dc.description.references Goentoro L, Shoval O, Kirschner MW, Alon U. The incoherent feedforward loop can provide fold-change detection in gene regulation. Mol Cell. 2009; 36(5):894–9. es_ES
dc.description.references Rodrigo G, Elena SF. Structural discrimination of robustness in transcriptional feedforward loops for pattern formation. PloS ONE. 2011; 6(2):16904. es_ES
dc.description.references Kim J, Khetarpal I, Sen S, Murray RM. Synthetic circuit for exact adaptation and fold-change detection. Nucleic Acids Res. 2014; 42(2):6078–89. [doi: 10.1093/nar/gku233 ]. es_ES
dc.description.references Chelliah V, Juty N, Ajmera I, Ali R, Dumousseau M, Glont M, Hucka M, Jalowicki G, Keating S, Knight-Schrijver V, et al. Biomodels: ten-year anniversary. Nucleic Acids Res. 2015; 43(D1):542–8. es_ES
dc.description.references Ang J, Bagh S, Ingalls BP, McMillen DR. Considerations for using integral feedback control to construct a perfectly adapting synthetic gene network. J Theor Biol. 2010; 266(4):723–38. es_ES
dc.description.references Biobrick Foundation. 2006. Part Registry [online]. http://partsregistry.org/ . Accessed 20 Feb 2015. es_ES
dc.description.references BIOSS. 2006. BIOSS Toolbox [online]. http://www.bioss.uni-freiburg.de/cms/toolbox-home.html . Accessed 20 Feb 2015. es_ES
dc.description.references BioFab. 2006. International Open Facility Advancing Biotechnology [online]. http://www.biofab.org/ . Accessed 20 Feb 2015. es_ES
dc.description.references Vallerio M, Hufkens J, Van Impe J, Logist F. An interactive decision-support system for multi-objective optimization of nonlinear dynamic processes with uncertainty. Expert Syst Appl. 2015; 42(21):7710–31. es_ES
dc.description.references Frangopol DM, Maute K. Life-cycle reliability-based optimization of civil and aerospace structures. Comput Struct. 2003; 81(7):397–410. es_ES
dc.description.references Lozano M, Molina D, Herrera F. Editorial scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems. Soft Comput. 2011; 15(11):2085–7. es_ES
dc.description.references Santana-Quintero LV, Montano AA, Coello CAC. A review of techniques for handling expensive functions in evolutionary multi-objective optimization. In: Computational Intelligence in Expensive Optimization Problems. Berlin: Springer: 2010. p. 29–59. es_ES


This item appears in the following Collection(s)

Show simple item record