- -

Semigroups and their topologies arising from Green's left quasiorder

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Semigroups and their topologies arising from Green's left quasiorder

Show full item record

Richmond, B. (2008). Semigroups and their topologies arising from Green's left quasiorder. Applied General Topology. 9(2):143-168. doi:10.4995/agt.2008.1795.

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/86420

Files in this item

Item Metadata

Title: Semigroups and their topologies arising from Green's left quasiorder
Author:
Issued date:
Abstract:
[EN] Given a semigroup (S, ·), Green’s left quasiorder on S is given by a ≤ b if a = u · b for some u ϵ S1. We determine which topological spaces with five or fewer elements arise as the specialization topology from Green’s ...[+]
Subjects: Green’s quasiorder , Semigroup , Principal topology , Specialization topology , Specialization quasiorder
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2008.1795
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2008.1795
Type: Artículo

References

Almeida, J. (2001). Some key problems on finite semigroups. Semigroup Forum, 64(2), 159-179. doi:10.1007/s002330010098

Ern�, M., & Stege, K. (1991). Counting finite posets and topologies. Order, 8(3), 247-265. doi:10.1007/bf00383446

Forsythe, G. E. (1955). SWAC Computes 126 Distinct Semigroups of Order 4. Proceedings of the American Mathematical Society, 6(3), 443. doi:10.2307/2032786 [+]
Almeida, J. (2001). Some key problems on finite semigroups. Semigroup Forum, 64(2), 159-179. doi:10.1007/s002330010098

Ern�, M., & Stege, K. (1991). Counting finite posets and topologies. Order, 8(3), 247-265. doi:10.1007/bf00383446

Forsythe, G. E. (1955). SWAC Computes 126 Distinct Semigroups of Order 4. Proceedings of the American Mathematical Society, 6(3), 443. doi:10.2307/2032786

Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., & Scott, D. S. (2003). Continuous Lattices and Domains. doi:10.1017/cbo9780511542725

P. A. Grillet, Semigroups, Marcel Dekker, New York. 1995.

D. J. Kleitman, B. R. Rothschild, and J. H. Spencer, The number of semigroups of order n, Proc. Am. Math. Soc. 55, no. 1 (1976), 227–232.

Richmond, T. A. (1998). Quasiorders, principal topologies, and partially ordered partitions. International Journal of Mathematics and Mathematical Sciences, 21(2), 221-234. doi:10.1155/s0161171298000325

Satoh, S., Yama, K., & Tokizawa, M. (1994). Semigroups of order 8. Semigroup Forum, 49(1), 7-29. doi:10.1007/bf02573467

K. Tetsuya, T. Hashimoto, T. Akazawa, R. Shibata, T. Inui, and T. Tamura, All semigroups of order at most 5, J. Gakugei Tokushima Univ. Nat. Sci. Math. 6 (1955), 19–39.

[-]

This item appears in the following Collection(s)

Show full item record