- -

Semigroups and their topologies arising from Green's left quasiorder

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Semigroups and their topologies arising from Green's left quasiorder

Mostrar el registro completo del ítem

Richmond, B. (2008). Semigroups and their topologies arising from Green's left quasiorder. Applied General Topology. 9(2):143-168. https://doi.org/10.4995/agt.2008.1795

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/86420

Ficheros en el ítem

Metadatos del ítem

Título: Semigroups and their topologies arising from Green's left quasiorder
Autor: Richmond, Bettina
Fecha difusión:
Resumen:
[EN] Given a semigroup (S, ·), Green’s left quasiorder on S is given by a ≤ b if a = u · b for some u ϵ S1. We determine which topological spaces with five or fewer elements arise as the specialization topology from Green’s ...[+]
Palabras clave: Green’s quasiorder , Semigroup , Principal topology , Specialization topology , Specialization quasiorder
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2008.1795
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2008.1795
Tipo: Artículo

References

Almeida, J. (2001). Some key problems on finite semigroups. Semigroup Forum, 64(2), 159-179. doi:10.1007/s002330010098

Ern�, M., & Stege, K. (1991). Counting finite posets and topologies. Order, 8(3), 247-265. doi:10.1007/bf00383446

Forsythe, G. E. (1955). SWAC Computes 126 Distinct Semigroups of Order 4. Proceedings of the American Mathematical Society, 6(3), 443. doi:10.2307/2032786 [+]
Almeida, J. (2001). Some key problems on finite semigroups. Semigroup Forum, 64(2), 159-179. doi:10.1007/s002330010098

Ern�, M., & Stege, K. (1991). Counting finite posets and topologies. Order, 8(3), 247-265. doi:10.1007/bf00383446

Forsythe, G. E. (1955). SWAC Computes 126 Distinct Semigroups of Order 4. Proceedings of the American Mathematical Society, 6(3), 443. doi:10.2307/2032786

Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., & Scott, D. S. (2003). Continuous Lattices and Domains. doi:10.1017/cbo9780511542725

P. A. Grillet, Semigroups, Marcel Dekker, New York. 1995.

D. J. Kleitman, B. R. Rothschild, and J. H. Spencer, The number of semigroups of order n, Proc. Am. Math. Soc. 55, no. 1 (1976), 227–232.

Richmond, T. A. (1998). Quasiorders, principal topologies, and partially ordered partitions. International Journal of Mathematics and Mathematical Sciences, 21(2), 221-234. doi:10.1155/s0161171298000325

Satoh, S., Yama, K., & Tokizawa, M. (1994). Semigroups of order 8. Semigroup Forum, 49(1), 7-29. doi:10.1007/bf02573467

K. Tetsuya, T. Hashimoto, T. Akazawa, R. Shibata, T. Inui, and T. Tamura, All semigroups of order at most 5, J. Gakugei Tokushima Univ. Nat. Sci. Math. 6 (1955), 19–39.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem