Mostrar el registro sencillo del ítem
dc.contributor.author | Richmond, Bettina | es_ES |
dc.date.accessioned | 2017-09-05T11:13:15Z | |
dc.date.available | 2017-09-05T11:13:15Z | |
dc.date.issued | 2008-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/86420 | |
dc.description.abstract | [EN] Given a semigroup (S, ·), Green’s left quasiorder on S is given by a ≤ b if a = u · b for some u ϵ S1. We determine which topological spaces with five or fewer elements arise as the specialization topology from Green’s left quasiorder for an appropriate semigroup structure on the set. In the process, we exhibit semigroup structures that yield general classes of finite topological spaces, as well as general classes of topological spaces which cannot be derived from semigroup structures via Green’s left quasiorder. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Green’s quasiorder | es_ES |
dc.subject | Semigroup | es_ES |
dc.subject | Principal topology | es_ES |
dc.subject | Specialization topology | es_ES |
dc.subject | Specialization quasiorder | es_ES |
dc.title | Semigroups and their topologies arising from Green's left quasiorder | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-09-05T11:05:17Z | |
dc.identifier.doi | 10.4995/agt.2008.1795 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Richmond, B. (2008). Semigroups and their topologies arising from Green's left quasiorder. Applied General Topology. 9(2):143-168. https://doi.org/10.4995/agt.2008.1795 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2008.1795 | es_ES |
dc.description.upvformatpinicio | 143 | es_ES |
dc.description.upvformatpfin | 168 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | Almeida, J. (2001). Some key problems on finite semigroups. Semigroup Forum, 64(2), 159-179. doi:10.1007/s002330010098 | es_ES |
dc.description.references | Ern�, M., & Stege, K. (1991). Counting finite posets and topologies. Order, 8(3), 247-265. doi:10.1007/bf00383446 | es_ES |
dc.description.references | Forsythe, G. E. (1955). SWAC Computes 126 Distinct Semigroups of Order 4. Proceedings of the American Mathematical Society, 6(3), 443. doi:10.2307/2032786 | es_ES |
dc.description.references | Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., & Scott, D. S. (2003). Continuous Lattices and Domains. doi:10.1017/cbo9780511542725 | es_ES |
dc.description.references | P. A. Grillet, Semigroups, Marcel Dekker, New York. 1995. | es_ES |
dc.description.references | D. J. Kleitman, B. R. Rothschild, and J. H. Spencer, The number of semigroups of order n, Proc. Am. Math. Soc. 55, no. 1 (1976), 227–232. | es_ES |
dc.description.references | Richmond, T. A. (1998). Quasiorders, principal topologies, and partially ordered partitions. International Journal of Mathematics and Mathematical Sciences, 21(2), 221-234. doi:10.1155/s0161171298000325 | es_ES |
dc.description.references | Satoh, S., Yama, K., & Tokizawa, M. (1994). Semigroups of order 8. Semigroup Forum, 49(1), 7-29. doi:10.1007/bf02573467 | es_ES |
dc.description.references | K. Tetsuya, T. Hashimoto, T. Akazawa, R. Shibata, T. Inui, and T. Tamura, All semigroups of order at most 5, J. Gakugei Tokushima Univ. Nat. Sci. Math. 6 (1955), 19–39. | es_ES |