- -

Semigroups and their topologies arising from Green's left quasiorder

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Semigroups and their topologies arising from Green's left quasiorder

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Richmond, Bettina es_ES
dc.date.accessioned 2017-09-05T11:13:15Z
dc.date.available 2017-09-05T11:13:15Z
dc.date.issued 2008-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/86420
dc.description.abstract [EN] Given a semigroup (S, ·), Green’s left quasiorder on S is given by a ≤ b if a = u · b for some u ϵ S1. We determine which topological spaces with five or fewer elements arise as the specialization topology from Green’s left quasiorder for an appropriate semigroup structure on the set. In the process, we exhibit semigroup structures that yield general classes of finite topological spaces, as well as general classes of topological spaces which cannot be derived from semigroup structures via Green’s left quasiorder. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Green’s quasiorder es_ES
dc.subject Semigroup es_ES
dc.subject Principal topology es_ES
dc.subject Specialization topology es_ES
dc.subject Specialization quasiorder es_ES
dc.title Semigroups and their topologies arising from Green's left quasiorder es_ES
dc.type Artículo es_ES
dc.date.updated 2017-09-05T11:05:17Z
dc.identifier.doi 10.4995/agt.2008.1795
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Richmond, B. (2008). Semigroups and their topologies arising from Green's left quasiorder. Applied General Topology. 9(2):143-168. https://doi.org/10.4995/agt.2008.1795 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2008.1795 es_ES
dc.description.upvformatpinicio 143 es_ES
dc.description.upvformatpfin 168 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.description.references Almeida, J. (2001). Some key problems on finite semigroups. Semigroup Forum, 64(2), 159-179. doi:10.1007/s002330010098 es_ES
dc.description.references Ern�, M., & Stege, K. (1991). Counting finite posets and topologies. Order, 8(3), 247-265. doi:10.1007/bf00383446 es_ES
dc.description.references Forsythe, G. E. (1955). SWAC Computes 126 Distinct Semigroups of Order 4. Proceedings of the American Mathematical Society, 6(3), 443. doi:10.2307/2032786 es_ES
dc.description.references Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., & Scott, D. S. (2003). Continuous Lattices and Domains. doi:10.1017/cbo9780511542725 es_ES
dc.description.references P. A. Grillet, Semigroups, Marcel Dekker, New York. 1995. es_ES
dc.description.references D. J. Kleitman, B. R. Rothschild, and J. H. Spencer, The number of semigroups of order n, Proc. Am. Math. Soc. 55, no. 1 (1976), 227–232. es_ES
dc.description.references Richmond, T. A. (1998). Quasiorders, principal topologies, and partially ordered partitions. International Journal of Mathematics and Mathematical Sciences, 21(2), 221-234. doi:10.1155/s0161171298000325 es_ES
dc.description.references Satoh, S., Yama, K., & Tokizawa, M. (1994). Semigroups of order 8. Semigroup Forum, 49(1), 7-29. doi:10.1007/bf02573467 es_ES
dc.description.references K. Tetsuya, T. Hashimoto, T. Akazawa, R. Shibata, T. Inui, and T. Tamura, All semigroups of order at most 5, J. Gakugei Tokushima Univ. Nat. Sci. Math. 6 (1955), 19–39. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem