Mostrar el registro sencillo del ítem
dc.contributor.author | Burzyk, Józef | es_ES |
dc.contributor.author | Ferens, Cezary | es_ES |
dc.contributor.author | Mikusinski, Piotr | es_ES |
dc.date.accessioned | 2017-09-05T11:30:03Z | |
dc.date.available | 2017-09-05T11:30:03Z | |
dc.date.issued | 2008-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/86431 | |
dc.description.abstract | [EN] Generalized quotients are defined as equivalence classes of pairs (x, f), where x is an element of a nonempty set X and f is an element of a commutative semigroup G acting on X. Topologies on X and G induce a natural topology on B(X,G), the space of generalized quotients. Separation properties of this topology are investigated. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Generalized quotients | es_ES |
dc.subject | Semigroup acting on a set | es_ES |
dc.subject | Quotient topology | es_ES |
dc.subject | Hausdorff topology | es_ES |
dc.title | On the topology of generalized quotients | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-09-05T11:04:44Z | |
dc.identifier.doi | 10.4995/agt.2008.1801 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Burzyk, J.; Ferens, C.; Mikusinski, P. (2008). On the topology of generalized quotients. Applied General Topology. 9(2):205-212. https://doi.org/10.4995/agt.2008.1801 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2008.1801 | es_ES |
dc.description.upvformatpinicio | 205 | es_ES |
dc.description.upvformatpfin | 212 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | J. Burzyk and P. Mikusinski, A generalization of the construction of a field of quotients with applications in analysis, Int. J. Math. Sci. 2 (2003), 229–236. | es_ES |
dc.description.references | J. H. Carruth, J. A. Hildebrant, and R. J. Koch, The Theory of Topological Semigroups (Marcel Dekker, New York, 1983). | es_ES |
dc.description.references | P. Mikusinski, Generalized Quotients with Applications in Analysis, Methods Appl. Anal. 10 (2004), 377–386. | es_ES |