- -

One point compactification for generalized quotient spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

One point compactification for generalized quotient spaces

Mostrar el registro completo del ítem

Karunakaran, V.; Ganesan, C. (2010). One point compactification for generalized quotient spaces. Applied General Topology. 11(1):21-27. https://doi.org/10.4995/agt.2010.1725

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/86823

Ficheros en el ítem

Metadatos del ítem

Título: One point compactification for generalized quotient spaces
Autor: Karunakaran, V. Ganesan, C.
Fecha difusión:
Resumen:
[EN] The concept of Generalized function spaces which were introduced and studied by Zemanian are further generalized as Boehmian spaces or as generalized quotient spaces in the recent literature. Their topological structure, ...[+]
Palabras clave: Generalized quotient space , Compact , Locally compact and Hausdorff , One point compactification
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2010.1725
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2010.1725
Agradecimientos:
The research of the second author is supported by a “University Grants Commission Research Fellowship in Sciences for Meritorious Students”, India.
Tipo: Artículo

References

T. K. Boehme, The support of Mikusinski operators, Trans. Amer. Math. Soc. 176 (1973), 319–334.

V. Karunakaran and C. Ganesan, Topology and the notion of convergence on generalized quotient spaces, Int. J. Pure Appl. Math. 44, no. 5 (2008), 797–808.

J. Mikusinski and P. Mikusinski, Quotients of sequences, Proc. of the II conference on Convergence Szezyrk (1981), 39–45. [+]
T. K. Boehme, The support of Mikusinski operators, Trans. Amer. Math. Soc. 176 (1973), 319–334.

V. Karunakaran and C. Ganesan, Topology and the notion of convergence on generalized quotient spaces, Int. J. Pure Appl. Math. 44, no. 5 (2008), 797–808.

J. Mikusinski and P. Mikusinski, Quotients of sequences, Proc. of the II conference on Convergence Szezyrk (1981), 39–45.

P. Mikusinski, Convergence of Boehmians, Japan J. Math 9 (1983), 159–179.

P. Mikusinski, Generalized quotients with applications in analysis, Methods Appl. Anal. 10 (2004), 377–386.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem