- -

One point compactification for generalized quotient spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

One point compactification for generalized quotient spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Karunakaran, V. es_ES
dc.contributor.author Ganesan, C. es_ES
dc.date.accessioned 2017-09-08T11:36:13Z
dc.date.available 2017-09-08T11:36:13Z
dc.date.issued 2010-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/86823
dc.description.abstract [EN] The concept of Generalized function spaces which were introduced and studied by Zemanian are further generalized as Boehmian spaces or as generalized quotient spaces in the recent literature. Their topological structure, notions of convergence in these space sare also investigated. Some sufficient conditions for the metrizability are also obtained. In this paper we shall assume that a generalized quotient space is non-compact and realize its one point compactification as a quotient space. es_ES
dc.description.sponsorship The research of the second author is supported by a “University Grants Commission Research Fellowship in Sciences for Meritorious Students”, India.
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Generalized quotient space es_ES
dc.subject Compact es_ES
dc.subject Locally compact and Hausdorff es_ES
dc.subject One point compactification es_ES
dc.title One point compactification for generalized quotient spaces es_ES
dc.type Artículo es_ES
dc.date.updated 2017-09-08T11:30:13Z
dc.identifier.doi 10.4995/agt.2010.1725
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Karunakaran, V.; Ganesan, C. (2010). One point compactification for generalized quotient spaces. Applied General Topology. 11(1):21-27. https://doi.org/10.4995/agt.2010.1725 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2010.1725 es_ES
dc.description.upvformatpinicio 21 es_ES
dc.description.upvformatpfin 27 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.contributor.funder University Grants Commission, India
dc.description.references T. K. Boehme, The support of Mikusinski operators, Trans. Amer. Math. Soc. 176 (1973), 319–334. es_ES
dc.description.references V. Karunakaran and C. Ganesan, Topology and the notion of convergence on generalized quotient spaces, Int. J. Pure Appl. Math. 44, no. 5 (2008), 797–808. es_ES
dc.description.references J. Mikusinski and P. Mikusinski, Quotients of sequences, Proc. of the II conference on Convergence Szezyrk (1981), 39–45. es_ES
dc.description.references P. Mikusinski, Convergence of Boehmians, Japan J. Math 9 (1983), 159–179. es_ES
dc.description.references P. Mikusinski, Generalized quotients with applications in analysis, Methods Appl. Anal. 10 (2004), 377–386. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem