Mostrar el registro sencillo del ítem
dc.contributor.author | Karunakaran, V. | es_ES |
dc.contributor.author | Ganesan, C. | es_ES |
dc.date.accessioned | 2017-09-08T11:36:13Z | |
dc.date.available | 2017-09-08T11:36:13Z | |
dc.date.issued | 2010-04-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/86823 | |
dc.description.abstract | [EN] The concept of Generalized function spaces which were introduced and studied by Zemanian are further generalized as Boehmian spaces or as generalized quotient spaces in the recent literature. Their topological structure, notions of convergence in these space sare also investigated. Some sufficient conditions for the metrizability are also obtained. In this paper we shall assume that a generalized quotient space is non-compact and realize its one point compactification as a quotient space. | es_ES |
dc.description.sponsorship | The research of the second author is supported by a “University Grants Commission Research Fellowship in Sciences for Meritorious Students”, India. | |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Generalized quotient space | es_ES |
dc.subject | Compact | es_ES |
dc.subject | Locally compact and Hausdorff | es_ES |
dc.subject | One point compactification | es_ES |
dc.title | One point compactification for generalized quotient spaces | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-09-08T11:30:13Z | |
dc.identifier.doi | 10.4995/agt.2010.1725 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Karunakaran, V.; Ganesan, C. (2010). One point compactification for generalized quotient spaces. Applied General Topology. 11(1):21-27. https://doi.org/10.4995/agt.2010.1725 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2010.1725 | es_ES |
dc.description.upvformatpinicio | 21 | es_ES |
dc.description.upvformatpfin | 27 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.contributor.funder | University Grants Commission, India | |
dc.description.references | T. K. Boehme, The support of Mikusinski operators, Trans. Amer. Math. Soc. 176 (1973), 319–334. | es_ES |
dc.description.references | V. Karunakaran and C. Ganesan, Topology and the notion of convergence on generalized quotient spaces, Int. J. Pure Appl. Math. 44, no. 5 (2008), 797–808. | es_ES |
dc.description.references | J. Mikusinski and P. Mikusinski, Quotients of sequences, Proc. of the II conference on Convergence Szezyrk (1981), 39–45. | es_ES |
dc.description.references | P. Mikusinski, Convergence of Boehmians, Japan J. Math 9 (1983), 159–179. | es_ES |
dc.description.references | P. Mikusinski, Generalized quotients with applications in analysis, Methods Appl. Anal. 10 (2004), 377–386. | es_ES |