- -

Identification of Dominant Excitation Patterns and Sources of Atrial Fibrillation by Causality Analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of Dominant Excitation Patterns and Sources of Atrial Fibrillation by Causality Analysis

Mostrar el registro completo del ítem

Rodrigo Bort, M.; Climent, A.; Liberos Mascarell, A.; Calvo, D.; Fernandez-Aviles, F.; Berenfeld, O.; Atienza, F.... (2016). Identification of Dominant Excitation Patterns and Sources of Atrial Fibrillation by Causality Analysis. Annals of Biomedical Engineering. 44(8):2364-2376. https://doi.org/10.1007/s10439-015-1534-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/86830

Ficheros en el ítem

Metadatos del ítem

Título: Identification of Dominant Excitation Patterns and Sources of Atrial Fibrillation by Causality Analysis
Autor: Rodrigo Bort, Miguel Climent, A.M. Liberos Mascarell, Alejandro Calvo, D. Fernandez-Aviles, F. Berenfeld, O. Atienza, F. Guillem, M.S
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
Burden of atrial fibrillation (AF) can be reduced by ablation of sources of electrical impulses driving AF but driver identification is still challenging. This study presents a new methodology based on causality analysis ...[+]
Palabras clave: Hierarchical pattern , Granger causality , Atrial fibrillation , Dominant pattern , Ablation
Derechos de uso: Reserva de todos los derechos
Fuente:
Annals of Biomedical Engineering. (issn: 0090-6964 )
DOI: 10.1007/s10439-015-1534-x
Editorial:
Springer Verlag (Germany)
Versión del editor: http://doi.org/10.1007/s10439-015-1534-x
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//ACIF%2F2013%2F021/
...[+]
info:eu-repo/grantAgreement/GVA//ACIF%2F2013%2F021/
info:eu-repo/grantAgreement/EC/H2020/692023/EU/Linking excellence in biomedical knowledge and computational intelligence research for personalized management of CVD within PHC/
info:eu-repo/grantAgreement/MINECO//PI13%2F01882/ES/Estudio preclínico de la implantación de parches de tejido cardiaco bioartificial electromecánicamente entrenados en un modelo de infarto de miocardio porcino/
info:eu-repo/grantAgreement/MICINN//PLE2009-0152/ES/INVESTIGACION TRASLACIONAL PARA EL DESARROLLO DE UN BANCO DE MATRICES DE ORGANOS Y DE ORGANOS Y TEJIDOS BIOARTIFICIALES AUTOLOGOS PARA TRASPLANTE/
info:eu-repo/grantAgreement/MINECO//PI13-00903/
info:eu-repo/grantAgreement/MINECO//PI14%2F00857/ES/Caracterización No-invasiva de los Mecanismos de Mantenimiento de la Fibrilación Auricular. Estudio PERSONALIZE-AF/
[-]
Agradecimientos:
FA served on the advisory board of Medtronic and has received research funding from St. Jude Medical Spain. OB received research support from Medtronic and St. Jude Medical. He is a Scientific Officer of Rhythm Solutions, ...[+]
Tipo: Artículo

References

Atienza, F., J. Almendral, J. Jalife, S. Zlochiver, R. Ploutz-Snyder, E. G. Torrecilla, A. Arenal, J. Kalifa, F. Fernández-Avilés, and O. Berenfeld. Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm. 6:33–40, 2009.

Atienza, F., J. Almendral, J. Moreno, R. Vaidyanathan, A. Talkachou, J. Kalifa, A. Arenal, J. P. Villacastín, E. G. Torrecilla, A. Sánchez, R. Ploutz-Snyder, J. Jalife, and O. Berenfeld. Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans evidence for a reentrant mechanism. Circulation 114:2434–2442, 2006.

Atienza, F., J. Almendral, J. M. Ormaetxe, A. Moya, J. D. Martínez-Alday, A. Hernández-Madrid, E. Castellanos, F. Arribas, M. Á. Arias, L. Tercedor, R. Peinado, M. F. Arcocha, M. Ortiz, N. Martínez-Alzamora, A. Arenal, F. Fernández-Avilés, and J. Jalife. Comparison of radiofrequency catheter ablation of drivers and circumferential pulmonary vein isolation in atrial fibrillation. A noninferiority randomized multicenter RADAR-AF Trial. J. Am. Coll. Cardiol. 64:2455–2467, 2014. [+]
Atienza, F., J. Almendral, J. Jalife, S. Zlochiver, R. Ploutz-Snyder, E. G. Torrecilla, A. Arenal, J. Kalifa, F. Fernández-Avilés, and O. Berenfeld. Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm. 6:33–40, 2009.

Atienza, F., J. Almendral, J. Moreno, R. Vaidyanathan, A. Talkachou, J. Kalifa, A. Arenal, J. P. Villacastín, E. G. Torrecilla, A. Sánchez, R. Ploutz-Snyder, J. Jalife, and O. Berenfeld. Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans evidence for a reentrant mechanism. Circulation 114:2434–2442, 2006.

Atienza, F., J. Almendral, J. M. Ormaetxe, A. Moya, J. D. Martínez-Alday, A. Hernández-Madrid, E. Castellanos, F. Arribas, M. Á. Arias, L. Tercedor, R. Peinado, M. F. Arcocha, M. Ortiz, N. Martínez-Alzamora, A. Arenal, F. Fernández-Avilés, and J. Jalife. Comparison of radiofrequency catheter ablation of drivers and circumferential pulmonary vein isolation in atrial fibrillation. A noninferiority randomized multicenter RADAR-AF Trial. J. Am. Coll. Cardiol. 64:2455–2467, 2014.

Atienza, F., D. Calvo, J. Almendral, S. Zlochiver, K. R. Grzeda, N. Martínez-Alzamora, E. González-Torrecilla, A. Arenal, F. Fernández-Avilés, and O. Berenfeld. Mechanisms of fractionated electrograms formation in the posterior left atrium during paroxysmal atrial fibrillation in humans. J. Am. Coll. Cardiol. 57:1081–1092, 2011.

Benharash, P., E. Buch, P. Frank, M. Share, R. Tung, K. Shivkumar, and R. Mandapati. Quantitative analysis of localized sources identified by focal impulse and rotor modulation mapping in atrial fibrillation. Circ. Arrhythm. Electrophysiol. 8:554–561, 2015.

Chao, T. F., H. M. Tsao, Y. J. Lin, C. F. Tsai, W. S. Lin, S. L. Chang, L. W. Lo, Y. F. Hu, T. C. Tuan, K. Suenari, C. H. Li, B. Hartono, H. Y. Chang, K. Ambrose, T. J. Wu, and S. A. Chen. Clinical outcome of catheter ablation in patients with nonparoxysmal atrial fibrillation: Results of 3-year follow-up. Circ. Arrhythm. Electrophysiol. 5:514–520, 2012.

Cuculich, P. S., Y. Wang, B. D. Lindsay, M. N. Faddis, R. B. Schuessler, R. J. Damiano, L. Li, and Y. Rudy. Noninvasive characterization of epicardial activation in humans with diverse atrial fibrillation patterns. Circulation. 5(122):1364–1372, 2010.

Dössel, O., M. W. Krueger, F. M. Weber, M. Wilhelms, and G. Seemann. Computational modeling of the human atrial anatomy and electrophysiology. Med. Biol. Eng. Comput. 50:773–799, 2012.

Freiwald, W. A., P. Valdes, J. Bosch, R. Biscay, J. C. Jimenez, L. M. Rodriguez, V. Rodriguez, A. K. Kreiter, and W. Singer. Testing non-linearity and directedness of interactions between neural groups in the macaque inferotemporal cortex. J. Neurosci. Methods 94:105–119, 1999.

Gerstenfeld, E. P., A. V. Sahakian, and S. Swiryn. Evidence for transient linking of atrial excitation during atrial fibrillation in humans. Circulation. 86:375–382, 1992.

Granger, C. W. J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 3:424–438, 1969.

Guillem, M. S., A. M. Climent, J. Millet, A. Arenal, F. Fernández-Avilés, J. Jalife, F. Atienza, and O. Berenfeld. Noninvasive localization of maximal frequency sites of atrial fibrillation by body surface potential mapping. Circ. Arrhythm. Electrophysiol. 6:294–301, 2013.

Haïssaguerre, M., P. Jaïs, D. C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Métayer, and J. Clémenty. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339:659–666, 1998.

Hsu, L. F., P. Jaïs, D. Keane, J. M. Wharton, I. Deisenhofer, M. Hocini, D. C. Shah, P. Sanders, C. Scavée, R. Weerasooriya, J. Clémenty, and M. Haïssaguerre. Atrial fibrillation originating from persistent left superior vena cava. Circulation. 109:828–832, 2004.

Ideker, R. E., and J. M. Rogers. Human ventricular fibrillation: wandering wavelets, mother rotors, or both? Circulation. 114:530–532, 2006.

Jalife, J. Déjà vu in the theories of atrial fibrillation dynamics. Cardiovasc. Res. 89:766–775, 2011.

Jalife, J., D. Filgueiras Rama, and O. Berenfeld. Letter by Jalife et al. Regarding Article, “Quantitative Analysis of Localized Sources Identified by Focal Impulse and Rotor Modulation Mapping in Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 8:1296–1298, 2015.

Kalifa, J., K. Tanaka, A. V. Zaitsev, M. Warren, R. Vaidyanathan, D. Auerbach, S. Pandit, K. L. Vikstrom, R. Ploutz-Snyder, A. Talkachou, F. Atienza, G. Guiraudon, J. Jalife, and O. Berenfeld. Mechanisms of wave fractionation at boundaries of high-frequency excitation in the posterior left atrium of the isolated sheep heart during atrial fibrillation. Circulation. 113:626–633, 2006.

Nademanee, K., J. McKenzie, E. Kosar, M. Schwab, B. Sunsaneewitayakul, T. Vasavakul, C. Khunnawat, and T. Ngarmukos. A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J. Am. Coll. Cardiol. 43:2044–2053, 2004.

Narayan, S. M., D. E. Krummen, P. Clopton, K. Shivkumar, and J. M. Miller. Direct Or Coincidental Elimination of Stable Rotors or Focal Sources May Explain Successful Atrial Fibrillation Ablation: On-Treatment Analysis of the CONFIRM (CONventional ablation for AF with or without Focal Impulse and Rotor Modulation) Trial. J. Am. Coll. Cardiol. 62:137–147, 2013.

Ng, J., D. Gordon, R. S. Passman, B. P. Knight, R. Arora, and J. J. Goldberger. Electrogram morphology recurrence patterns during atrial fibrillation. Heart Rhythm. 11:2027–2034, 2014.

Providência, R., P. D. Lambiase, N. Srinivasan, G. Ganesha Babu, K. Bronis, S. Ahsan, F. Z. Khan, A. W. Chow, E. Rowland, M. Lowe, and O. R. Segal. Is there still a role for CFAE ablation in addition to pulmonary vein isolation in patients with paroxysmal and persistent atrial fibrillation? A meta-analysis of 1415 patients. Circ. Arrhythm. Electrophysiol. 8:1017–1029, 2015.

Richter, U., L. Faes, A. Cristoforetti, M. Masè, F. Ravelli, M. Stridh, and L. Sörnmo. A novel approach to propagation pattern analysis in intracardiac atrial fibrillation signals. Ann. Biomed. Eng. 39:310–323, 2011.

Rodrigo, M., M. S. Guillem, A. M. Climent, J. Pedrón-Torrecilla, A. Liberos, J. Millet, F. Fernández-Avilés, F. Atienza, and O. Berenfeld. Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: a clinical-computational study. Heart Rhythm. 11:1584–1591, 2014.

Sanders, P., O. Berenfeld, M. Hocini, P. Jaïs, R. Vaidyanathan, L. F. Hsu, S. Garrigue, Y. Takahashi, M. Rotter, F. Sacher, C. Scavée, R. Ploutz-Snyder, J. Jalife, and M. Haïssaguerre. Spectral analysis identifies sites of high frequency activity maintaining atrial fibrillation in humans. Circulation. 112:789–797, 2005.

Zlochiver, S., M. Yamazaki, J. Kalifa, and O. Berenfeld. Rotor meandering contributes to irregularity in electrograms during atrial fibrillation. Heart Rhythm. 5:846–854, 2008.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem