- -

Electric Charge of Dust Particles in a Plasma

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electric Charge of Dust Particles in a Plasma

Mostrar el registro completo del ítem

Davletov, AE.; Arkhipov, YV.; Tkachenko Gorski, IM. (2016). Electric Charge of Dust Particles in a Plasma. Contributions to Plasma Physics. 56(3):308-320. doi:10.1002/ctpp.201500111

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/87350

Ficheros en el ítem

Metadatos del ítem

Título: Electric Charge of Dust Particles in a Plasma
Autor: Davletov, Askar E. Arkhipov, Yuriy V. Tkachenko Gorski, Igor Mijail
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
The problem of calculation of the electric charge of dust particles in a plasma is considered from different points of view. At first the charging of polarizable dust particles is studied within the orbital motion limited ...[+]
Palabras clave: Charge of dust particles , polarization effects , orbital motion limited approximation
Derechos de uso: Cerrado
Fuente:
Contributions to Plasma Physics. (issn: 0863-1042 ) (eissn: 1521-3986 )
DOI: 10.1002/ctpp.201500111
Editorial:
Wiley-VCH Verlag
Versión del editor: http://doi.org/10.1002/ctpp.201500111
Tipo: Artículo

References

Chai, K.-B., & Bellan, P. M. (2015). FORMATION AND ALIGNMENT OF ELONGATED, FRACTAL-LIKE WATER-ICE GRAINS IN EXTREMELY COLD, WEAKLY IONIZED PLASMA. The Astrophysical Journal, 802(2), 112. doi:10.1088/0004-637x/802/2/112

F. Verheest Waves in Dusty Space Plasmas (Kluwer Academic Publishers, Dordrecht, 2000).

Nourry, S., & Krim, L. (2015). The chemical stability of CH3OH on cold interstellar grains: heat-induced dehydrogenation processes of methanol. Monthly Notices of the Royal Astronomical Society, 452(4), 3319-3333. doi:10.1093/mnras/stv1440 [+]
Chai, K.-B., & Bellan, P. M. (2015). FORMATION AND ALIGNMENT OF ELONGATED, FRACTAL-LIKE WATER-ICE GRAINS IN EXTREMELY COLD, WEAKLY IONIZED PLASMA. The Astrophysical Journal, 802(2), 112. doi:10.1088/0004-637x/802/2/112

F. Verheest Waves in Dusty Space Plasmas (Kluwer Academic Publishers, Dordrecht, 2000).

Nourry, S., & Krim, L. (2015). The chemical stability of CH3OH on cold interstellar grains: heat-induced dehydrogenation processes of methanol. Monthly Notices of the Royal Astronomical Society, 452(4), 3319-3333. doi:10.1093/mnras/stv1440

Gao, Y.-T., & Tian, B. (2007). On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations. Europhysics Letters (EPL), 77(1), 15001. doi:10.1209/0295-5075/77/15001

Verheest, F. (1999). Dusty plasmas in application to astrophysics. Plasma Physics and Controlled Fusion, 41(3A), A445-A451. doi:10.1088/0741-3335/41/3a/037

A. Bouchoule Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing (Wiley, Chichester, 1999).

Bacharis, M., Coppins, M., & Allen, J. E. (2010). Critical issues for modeling dust transport in tokamaks. Physical Review E, 82(2). doi:10.1103/physreve.82.026403

Vaverka, J., Richterová, I., Vyšinka, M., Pavlů, J., Šafránková, J., & Němeček, Z. (2014). The influence of secondary electron emission on the floating potential of tokamak-born dust. Plasma Physics and Controlled Fusion, 56(2), 025001. doi:10.1088/0741-3335/56/2/025001

Fortov, V. E., Petrov, O. F., & Vaulina, O. S. (2008). Dusty-Plasma Liquid in the Statistical Theory of the Liquid State. Physical Review Letters, 101(19). doi:10.1103/physrevlett.101.195003

Erimbetova, L. T., Davletov, A. E., Kudyshev, Z. A., & Mukhametkarimov, Y. S. (2013). Influence of Polarization Phenomena on Radial Distribution Function of Dust Particles. Contributions to Plasma Physics, 53(4-5), 414-418. doi:10.1002/ctpp.201200070

Stanton, L. G., & Murillo, M. S. (2015). Unified description of linear screening in dense plasmas. Physical Review E, 91(3). doi:10.1103/physreve.91.033104

Davletov, A. E., Yerimbetova, L. T., Mukhametkarimov, Y. S., & Ospanova, A. K. (2014). Finite size effects in the static structure factor of dusty plasmas. Physics of Plasmas, 21(7), 073704. doi:10.1063/1.4887009

Meichsner, J., Bonitz, M., Piel, A., & Feske, H. (2012). Recent Progress in Complex Plasmas. Contributions to Plasma Physics, 52(10), 789-794. doi:10.1002/ctpp.201200076

Tsytovich, V. N., Morfill, G. E., & Ivlev, A. V. (2003). Van der Waal’s approach in the theory of phase transitions in complex plasmas. Contributions to Plasma Physics, 43(7), 439-446. doi:10.1002/ctpp.200310059

Khrapak, S. A., Khrapak, A. G., Ivlev, A. V., & Morfill, G. E. (2014). Simple estimation of thermodynamic properties of Yukawa systems. Physical Review E, 89(2). doi:10.1103/physreve.89.023102

Khrapak, S., & Morfill, G. (2009). Basic Processes in Complex (Dusty) Plasmas: Charging, Interactions, and Ion Drag Force. Contributions to Plasma Physics, 49(3), 148-168. doi:10.1002/ctpp.200910018

Shukla, P. K., & Eliasson, B. (2009). Colloquium: Fundamentals of dust-plasma interactions. Reviews of Modern Physics, 81(1), 25-44. doi:10.1103/revmodphys.81.25

Allen, J. E. (1992). Probe theory - the orbital motion approach. Physica Scripta, 45(5), 497-503. doi:10.1088/0031-8949/45/5/013

Tang, X.-Z., & Luca Delzanno, G. (2014). Orbital-motion-limited theory of dust charging and plasma response. Physics of Plasmas, 21(12), 123708. doi:10.1063/1.4904404

Delzanno, G. L., & Tang, X.-Z. (2014). Charging and Heat Collection by a Positively Charged Dust Grain in a Plasma. Physical Review Letters, 113(3). doi:10.1103/physrevlett.113.035002

Benkadda, S., Tsytovich, V. N., & Vladimirov, S. V. (1999). Shielding and charging of dust particles in the plasma sheath. Physical Review E, 60(4), 4708-4714. doi:10.1103/physreve.60.4708

Mishra, S. K., & Misra, S. (2014). Statistical charge distribution over dust particles in a non-Maxwellian Lorentzian plasma. Physics of Plasmas, 21(7), 073706. doi:10.1063/1.4889893

Piel, A., & Schmidt, C. (2015). Dust charging and charge fluctuations in a weakly collisional radio-frequency sheath at low pressure. Physics of Plasmas, 22(5), 053701. doi:10.1063/1.4919859

Tribeche, M., & Kant Shukla, P. (2012). Charging of a dust particle in a plasma with a nonextensive ion distribution function. Physics Letters A, 376(14), 1207-1210. doi:10.1016/j.physleta.2012.02.031

Gong, J., & Du, J. (2012). Dust charging processes in the nonequilibrium dusty plasma with nonextensive power-law distribution. Physics of Plasmas, 19(2), 023704. doi:10.1063/1.3682051

Gong, J., & Du, J. (2012). Secondary electron emissions and dust charging currents in the nonequilibrium dusty plasma with power-law distributions. Physics of Plasmas, 19(6), 063703. doi:10.1063/1.4729684

Ya. L. Al'pert A. V. Gurevich L. P. Pitaevskii Space Physics with Artificial Satellites (Plenum Press, New York, 1965).

ALLEN, J. E., ANNARATONE, B. M., & de ANGELIS, U. (2000). On the orbital motion limited theory for a small body at floating potential in a Maxwellian plasma. Journal of Plasma Physics, 63(4), 299-309. doi:10.1017/s0022377800008345

Willis, C. T. N., Coppins, M., Bacharis, M., & Allen, J. E. (2012). Floating potential of large dust grains in a collisionless flowing plasma. Physical Review E, 85(3). doi:10.1103/physreve.85.036403

Rizopoulou, N., Robinson, A. P. L., Coppins, M., & Bacharis, M. (2015). Charging of large dust grains in flowing plasmas. Physical Review E, 91(6). doi:10.1103/physreve.91.063103

Zagorodny, A. G., Schram, P. P. J. M., & Trigger, S. A. (2000). Stationary Velocity and Charge Distributions of Grains in Dusty Plasmas. Physical Review Letters, 84(16), 3594-3597. doi:10.1103/physrevlett.84.3594

Vishnyakov, V. I. (2012). Charging of dust in thermal collisional plasmas. Physical Review E, 85(2). doi:10.1103/physreve.85.026402

Taccogna, F. (2012). Dust in Plasma I. Particle Size and Ion-Neutral Collision Effects. Contributions to Plasma Physics, 52(9), 744-755. doi:10.1002/ctpp.201100018

Kersten, H., Deutsch, H., & Kroesen, G. M. W. (2004). Charging of micro-particles in plasma–dust interaction. International Journal of Mass Spectrometry, 233(1-3), 51-60. doi:10.1016/j.ijms.2003.10.018

Bronold, F. X., Fehske, H., Heinisch, R. L., & Marbach, J. (2012). Wall Charge and Potential from a Microscopic Point of View. Contributions to Plasma Physics, 52(10), 856-863. doi:10.1002/ctpp.201200032

Bronold, F. X., Fehske, H., Kersten, H., & Deutsch, H. (2008). Surface States and the Charge of a Dust Particle in a Plasma. Physical Review Letters, 101(17). doi:10.1103/physrevlett.101.175002

Bronold, F. X., Fehske, H., Kersten, H., & Deutsch, H. (2009). Towards a Microscopic Theory of Particle Charging. Contributions to Plasma Physics, 49(4-5), 303-315. doi:10.1002/ctpp.200910028

Bacharis, M. (2014). Floating potential of large dust grains with electron emission. Physics of Plasmas, 21(7), 074501. doi:10.1063/1.4886361

Taccogna, F., & Mizzi, G. (2014). Dust in Plasma II. Effects of Secondary Electrons: Ionization and Surface Emission. Contributions to Plasma Physics, 54(10), 877-888. doi:10.1002/ctpp.201400040

Fortov, V. E., Nefedov, A. P., Molotkov, V. I., Poustylnik, M. Y., & Torchinsky, V. M. (2001). Dependence of the Dust-Particle Charge on Its Size in a Glow-Discharge Plasma. Physical Review Letters, 87(20). doi:10.1103/physrevlett.87.205002

Kakati, B., Kalita, D., Kausik, S. S., Bandyopadhyay, M., & Saikia, B. K. (2014). Studies on hydrogen plasma and dust charging in low-pressure filament discharge. Physics of Plasmas, 21(8), 083704. doi:10.1063/1.4893305

Yousefi, R., Davis, A. B., Carmona-Reyes, J., Matthews, L. S., & Hyde, T. W. (2014). Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma. Physical Review E, 90(3). doi:10.1103/physreve.90.033101

Ramazanov, T. S., Bastykova, N. K., Ussenov, Y. A., Kodanova, S. K., Dzhumagulova, K. N., & Dosbolayev, M. K. (2012). The Behavior of Dust Particles Near Langmuir Probe. Contributions to Plasma Physics, 52(2), 110-113. doi:10.1002/ctpp.201100071

L. D. Landau E. M. Lifshitz Course of theoretical physics. Volume 8. Electrodynamics of continuous media (Pergamon Press, New York, 1984).

L. D. Landau E. M. Lifshitz Course of theoretical physics. Volume 1. Mechanics (Pergamon Press, New York, 1969).

W. Ebeling A. Förster V. E. Fortov V. K. Gryaznov A. Ya. Polishuk Thermophysical properties of hot dense plasmas (B. G. Teubner Verlagsgesellshaft, Stuttgart-Leipzig, 1991).

Arkhipov, Y. V., Baimbetov, F. B., & Davletov, A. E. (2005). Ionization equilibrium and equation of state of partially ionized hydrogen plasmas: Pseudopotential approach in chemical picture. Physics of Plasmas, 12(8), 082701. doi:10.1063/1.1993062

Sukhinin, G. I., Fedoseev, A. V., Antipov, S. N., Petrov, O. F., & Fortov, V. E. (2009). Influence of Dust Particles Concentration on Plasma Parameters in DC Discharge. Contributions to Plasma Physics, 49(10), 781-785. doi:10.1002/ctpp.200910092

Arkhipov, Y. V., Baimbetov, F. B., Davletov, A. E., & Ramazanov, T. S. (1999). Equilibrium Properties of H-Plasma. Contributions to Plasma Physics, 39(6), 495-499. doi:10.1002/ctpp.2150390603

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem