- -

Electric Charge of Dust Particles in a Plasma

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electric Charge of Dust Particles in a Plasma

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Davletov, Askar E. es_ES
dc.contributor.author Arkhipov, Yuriy V. es_ES
dc.contributor.author Tkachenko Gorski, Igor Mijail es_ES
dc.date.accessioned 2017-09-15T12:10:40Z
dc.date.issued 2016-04
dc.identifier.issn 0863-1042
dc.identifier.uri http://hdl.handle.net/10251/87350
dc.description.abstract The problem of calculation of the electric charge of dust particles in a plasma is considered from different points of view. At first the charging of polarizable dust particles is studied within the orbital motion limited approach. Secondly, the plasma electrodynamics is applied to show that the electric charge of a dust particle is determined by the normal component of the dielectric displacement vector near the grain surface rather than the normal component of the electric field strength. And, finally, the chemical model, initially proposed for determination of partially ionized plasma composition, is demonstrated to be very productive in evaluating the electric charge of the dust component. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim es_ES
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Contributions to Plasma Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Charge of dust particles es_ES
dc.subject polarization effects es_ES
dc.subject orbital motion limited approximation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Electric Charge of Dust Particles in a Plasma es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/ctpp.201500111
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Davletov, AE.; Arkhipov, YV.; Tkachenko Gorski, IM. (2016). Electric Charge of Dust Particles in a Plasma. Contributions to Plasma Physics. 56(3):308-320. doi:10.1002/ctpp.201500111 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1002/ctpp.201500111 es_ES
dc.description.upvformatpinicio 308 es_ES
dc.description.upvformatpfin 320 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 56 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 328211 es_ES
dc.identifier.eissn 1521-3986
dc.description.references Chai, K.-B., & Bellan, P. M. (2015). FORMATION AND ALIGNMENT OF ELONGATED, FRACTAL-LIKE WATER-ICE GRAINS IN EXTREMELY COLD, WEAKLY IONIZED PLASMA. The Astrophysical Journal, 802(2), 112. doi:10.1088/0004-637x/802/2/112 es_ES
dc.description.references F. Verheest Waves in Dusty Space Plasmas (Kluwer Academic Publishers, Dordrecht, 2000). es_ES
dc.description.references Nourry, S., & Krim, L. (2015). The chemical stability of CH3OH on cold interstellar grains: heat-induced dehydrogenation processes of methanol. Monthly Notices of the Royal Astronomical Society, 452(4), 3319-3333. doi:10.1093/mnras/stv1440 es_ES
dc.description.references Gao, Y.-T., & Tian, B. (2007). On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations. Europhysics Letters (EPL), 77(1), 15001. doi:10.1209/0295-5075/77/15001 es_ES
dc.description.references Verheest, F. (1999). Dusty plasmas in application to astrophysics. Plasma Physics and Controlled Fusion, 41(3A), A445-A451. doi:10.1088/0741-3335/41/3a/037 es_ES
dc.description.references A. Bouchoule Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing (Wiley, Chichester, 1999). es_ES
dc.description.references Bacharis, M., Coppins, M., & Allen, J. E. (2010). Critical issues for modeling dust transport in tokamaks. Physical Review E, 82(2). doi:10.1103/physreve.82.026403 es_ES
dc.description.references Vaverka, J., Richterová, I., Vyšinka, M., Pavlů, J., Šafránková, J., & Němeček, Z. (2014). The influence of secondary electron emission on the floating potential of tokamak-born dust. Plasma Physics and Controlled Fusion, 56(2), 025001. doi:10.1088/0741-3335/56/2/025001 es_ES
dc.description.references Fortov, V. E., Petrov, O. F., & Vaulina, O. S. (2008). Dusty-Plasma Liquid in the Statistical Theory of the Liquid State. Physical Review Letters, 101(19). doi:10.1103/physrevlett.101.195003 es_ES
dc.description.references Erimbetova, L. T., Davletov, A. E., Kudyshev, Z. A., & Mukhametkarimov, Y. S. (2013). Influence of Polarization Phenomena on Radial Distribution Function of Dust Particles. Contributions to Plasma Physics, 53(4-5), 414-418. doi:10.1002/ctpp.201200070 es_ES
dc.description.references Stanton, L. G., & Murillo, M. S. (2015). Unified description of linear screening in dense plasmas. Physical Review E, 91(3). doi:10.1103/physreve.91.033104 es_ES
dc.description.references Davletov, A. E., Yerimbetova, L. T., Mukhametkarimov, Y. S., & Ospanova, A. K. (2014). Finite size effects in the static structure factor of dusty plasmas. Physics of Plasmas, 21(7), 073704. doi:10.1063/1.4887009 es_ES
dc.description.references Meichsner, J., Bonitz, M., Piel, A., & Feske, H. (2012). Recent Progress in Complex Plasmas. Contributions to Plasma Physics, 52(10), 789-794. doi:10.1002/ctpp.201200076 es_ES
dc.description.references Tsytovich, V. N., Morfill, G. E., & Ivlev, A. V. (2003). Van der Waal’s approach in the theory of phase transitions in complex plasmas. Contributions to Plasma Physics, 43(7), 439-446. doi:10.1002/ctpp.200310059 es_ES
dc.description.references Khrapak, S. A., Khrapak, A. G., Ivlev, A. V., & Morfill, G. E. (2014). Simple estimation of thermodynamic properties of Yukawa systems. Physical Review E, 89(2). doi:10.1103/physreve.89.023102 es_ES
dc.description.references Khrapak, S., & Morfill, G. (2009). Basic Processes in Complex (Dusty) Plasmas: Charging, Interactions, and Ion Drag Force. Contributions to Plasma Physics, 49(3), 148-168. doi:10.1002/ctpp.200910018 es_ES
dc.description.references Shukla, P. K., & Eliasson, B. (2009). Colloquium: Fundamentals of dust-plasma interactions. Reviews of Modern Physics, 81(1), 25-44. doi:10.1103/revmodphys.81.25 es_ES
dc.description.references Allen, J. E. (1992). Probe theory - the orbital motion approach. Physica Scripta, 45(5), 497-503. doi:10.1088/0031-8949/45/5/013 es_ES
dc.description.references Tang, X.-Z., & Luca Delzanno, G. (2014). Orbital-motion-limited theory of dust charging and plasma response. Physics of Plasmas, 21(12), 123708. doi:10.1063/1.4904404 es_ES
dc.description.references Delzanno, G. L., & Tang, X.-Z. (2014). Charging and Heat Collection by a Positively Charged Dust Grain in a Plasma. Physical Review Letters, 113(3). doi:10.1103/physrevlett.113.035002 es_ES
dc.description.references Benkadda, S., Tsytovich, V. N., & Vladimirov, S. V. (1999). Shielding and charging of dust particles in the plasma sheath. Physical Review E, 60(4), 4708-4714. doi:10.1103/physreve.60.4708 es_ES
dc.description.references Mishra, S. K., & Misra, S. (2014). Statistical charge distribution over dust particles in a non-Maxwellian Lorentzian plasma. Physics of Plasmas, 21(7), 073706. doi:10.1063/1.4889893 es_ES
dc.description.references Piel, A., & Schmidt, C. (2015). Dust charging and charge fluctuations in a weakly collisional radio-frequency sheath at low pressure. Physics of Plasmas, 22(5), 053701. doi:10.1063/1.4919859 es_ES
dc.description.references Tribeche, M., & Kant Shukla, P. (2012). Charging of a dust particle in a plasma with a nonextensive ion distribution function. Physics Letters A, 376(14), 1207-1210. doi:10.1016/j.physleta.2012.02.031 es_ES
dc.description.references Gong, J., & Du, J. (2012). Dust charging processes in the nonequilibrium dusty plasma with nonextensive power-law distribution. Physics of Plasmas, 19(2), 023704. doi:10.1063/1.3682051 es_ES
dc.description.references Gong, J., & Du, J. (2012). Secondary electron emissions and dust charging currents in the nonequilibrium dusty plasma with power-law distributions. Physics of Plasmas, 19(6), 063703. doi:10.1063/1.4729684 es_ES
dc.description.references Ya. L. Al'pert A. V. Gurevich L. P. Pitaevskii Space Physics with Artificial Satellites (Plenum Press, New York, 1965). es_ES
dc.description.references ALLEN, J. E., ANNARATONE, B. M., & de ANGELIS, U. (2000). On the orbital motion limited theory for a small body at floating potential in a Maxwellian plasma. Journal of Plasma Physics, 63(4), 299-309. doi:10.1017/s0022377800008345 es_ES
dc.description.references Willis, C. T. N., Coppins, M., Bacharis, M., & Allen, J. E. (2012). Floating potential of large dust grains in a collisionless flowing plasma. Physical Review E, 85(3). doi:10.1103/physreve.85.036403 es_ES
dc.description.references Rizopoulou, N., Robinson, A. P. L., Coppins, M., & Bacharis, M. (2015). Charging of large dust grains in flowing plasmas. Physical Review E, 91(6). doi:10.1103/physreve.91.063103 es_ES
dc.description.references Zagorodny, A. G., Schram, P. P. J. M., & Trigger, S. A. (2000). Stationary Velocity and Charge Distributions of Grains in Dusty Plasmas. Physical Review Letters, 84(16), 3594-3597. doi:10.1103/physrevlett.84.3594 es_ES
dc.description.references Vishnyakov, V. I. (2012). Charging of dust in thermal collisional plasmas. Physical Review E, 85(2). doi:10.1103/physreve.85.026402 es_ES
dc.description.references Taccogna, F. (2012). Dust in Plasma I. Particle Size and Ion-Neutral Collision Effects. Contributions to Plasma Physics, 52(9), 744-755. doi:10.1002/ctpp.201100018 es_ES
dc.description.references Kersten, H., Deutsch, H., & Kroesen, G. M. W. (2004). Charging of micro-particles in plasma–dust interaction. International Journal of Mass Spectrometry, 233(1-3), 51-60. doi:10.1016/j.ijms.2003.10.018 es_ES
dc.description.references Bronold, F. X., Fehske, H., Heinisch, R. L., & Marbach, J. (2012). Wall Charge and Potential from a Microscopic Point of View. Contributions to Plasma Physics, 52(10), 856-863. doi:10.1002/ctpp.201200032 es_ES
dc.description.references Bronold, F. X., Fehske, H., Kersten, H., & Deutsch, H. (2008). Surface States and the Charge of a Dust Particle in a Plasma. Physical Review Letters, 101(17). doi:10.1103/physrevlett.101.175002 es_ES
dc.description.references Bronold, F. X., Fehske, H., Kersten, H., & Deutsch, H. (2009). Towards a Microscopic Theory of Particle Charging. Contributions to Plasma Physics, 49(4-5), 303-315. doi:10.1002/ctpp.200910028 es_ES
dc.description.references Bacharis, M. (2014). Floating potential of large dust grains with electron emission. Physics of Plasmas, 21(7), 074501. doi:10.1063/1.4886361 es_ES
dc.description.references Taccogna, F., & Mizzi, G. (2014). Dust in Plasma II. Effects of Secondary Electrons: Ionization and Surface Emission. Contributions to Plasma Physics, 54(10), 877-888. doi:10.1002/ctpp.201400040 es_ES
dc.description.references Fortov, V. E., Nefedov, A. P., Molotkov, V. I., Poustylnik, M. Y., & Torchinsky, V. M. (2001). Dependence of the Dust-Particle Charge on Its Size in a Glow-Discharge Plasma. Physical Review Letters, 87(20). doi:10.1103/physrevlett.87.205002 es_ES
dc.description.references Kakati, B., Kalita, D., Kausik, S. S., Bandyopadhyay, M., & Saikia, B. K. (2014). Studies on hydrogen plasma and dust charging in low-pressure filament discharge. Physics of Plasmas, 21(8), 083704. doi:10.1063/1.4893305 es_ES
dc.description.references Yousefi, R., Davis, A. B., Carmona-Reyes, J., Matthews, L. S., & Hyde, T. W. (2014). Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma. Physical Review E, 90(3). doi:10.1103/physreve.90.033101 es_ES
dc.description.references Ramazanov, T. S., Bastykova, N. K., Ussenov, Y. A., Kodanova, S. K., Dzhumagulova, K. N., & Dosbolayev, M. K. (2012). The Behavior of Dust Particles Near Langmuir Probe. Contributions to Plasma Physics, 52(2), 110-113. doi:10.1002/ctpp.201100071 es_ES
dc.description.references L. D. Landau E. M. Lifshitz Course of theoretical physics. Volume 8. Electrodynamics of continuous media (Pergamon Press, New York, 1984). es_ES
dc.description.references L. D. Landau E. M. Lifshitz Course of theoretical physics. Volume 1. Mechanics (Pergamon Press, New York, 1969). es_ES
dc.description.references W. Ebeling A. Förster V. E. Fortov V. K. Gryaznov A. Ya. Polishuk Thermophysical properties of hot dense plasmas (B. G. Teubner Verlagsgesellshaft, Stuttgart-Leipzig, 1991). es_ES
dc.description.references Arkhipov, Y. V., Baimbetov, F. B., & Davletov, A. E. (2005). Ionization equilibrium and equation of state of partially ionized hydrogen plasmas: Pseudopotential approach in chemical picture. Physics of Plasmas, 12(8), 082701. doi:10.1063/1.1993062 es_ES
dc.description.references Sukhinin, G. I., Fedoseev, A. V., Antipov, S. N., Petrov, O. F., & Fortov, V. E. (2009). Influence of Dust Particles Concentration on Plasma Parameters in DC Discharge. Contributions to Plasma Physics, 49(10), 781-785. doi:10.1002/ctpp.200910092 es_ES
dc.description.references Arkhipov, Y. V., Baimbetov, F. B., Davletov, A. E., & Ramazanov, T. S. (1999). Equilibrium Properties of H-Plasma. Contributions to Plasma Physics, 39(6), 495-499. doi:10.1002/ctpp.2150390603 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem