- -

Epimorphisms and maximal covers in categories of compact spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Epimorphisms and maximal covers in categories of compact spaces

Mostrar el registro completo del ítem

Banaschewski, B.; Hager, A. (2013). Epimorphisms and maximal covers in categories of compact spaces. Applied General Topology. 14(1):41-52. https://doi.org/10.4995/agt.2013.1616

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/87463

Ficheros en el ítem

Metadatos del ítem

Título: Epimorphisms and maximal covers in categories of compact spaces
Autor: Banaschewski, B. Hager, A.W.
Fecha difusión:
Resumen:
[EN] The category C is "projective complete"if each object has a projective cover (which is then a maximal cover). This property inherits from C to an epireflective full subcategory R provided the epimorphisms in R are ...[+]
Palabras clave: Epimorphism , Cover , Projective , Essential extension , Compact , Strongly rigid
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2013.1616
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2013.1616
Tipo: Artículo

References

H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1966) 214–249.

R. Engelking, General Topology, Heldermann 1989.

A. Gleason, Projective topological spaces, Ill. J. Math. 2 (1958), 482–489. [+]
H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1966) 214–249.

R. Engelking, General Topology, Heldermann 1989.

A. Gleason, Projective topological spaces, Ill. J. Math. 2 (1958), 482–489.

L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag 1976.

HAGER, A. W. (1989). Minimal Covers of Topological Spaces. Annals of the New York Academy of Sciences, 552(1 Papers on Gen), 44-59. doi:10.1111/j.1749-6632.1989.tb22385.x

Hager, A. W., & Martinez, J. (1998). Singular Archimedean lattice-ordered groups. Algebra Universalis, 40(2), 119-147. doi:10.1007/s000120050086

A. Hager and L. Robertson, Representing and ringifying a Riesz space, Symp. Math. XXI (1977), 411–431.

H. Herrlich and G. Strecker, Category Theory, Allyn and Bacon 1973.

Kennison, J. F. (1965). Reflective functors in general topology and elsewhere. Transactions of the American Mathematical Society, 118, 303-303. doi:10.1090/s0002-9947-1965-0174611-9

Porter, J. R., & Woods, R. G. (1988). Extensions and Absolutes of Hausdorff Spaces. doi:10.1007/978-1-4612-3712-9

V. Trnková, Non-constant continuous mappings of metric or compact Hausdorff spaces, Comm. Math. Univ. Carol. 13 (1972), 283–295.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem