- -

Epimorphisms and maximal covers in categories of compact spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Epimorphisms and maximal covers in categories of compact spaces

Show full item record

Banaschewski, B.; Hager, A. (2013). Epimorphisms and maximal covers in categories of compact spaces. Applied General Topology. 14(1):41-52. doi:10.4995/agt.2013.1616.

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/87463

Files in this item

Item Metadata

Title: Epimorphisms and maximal covers in categories of compact spaces
Author: Banaschewski, B. Hager, A.W.
Issued date:
Abstract:
[EN] The category C is "projective complete"if each object has a projective cover (which is then a maximal cover). This property inherits from C to an epireflective full subcategory R provided the epimorphisms in R are ...[+]
Subjects: Epimorphism , Cover , Projective , Essential extension , Compact , Strongly rigid
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2013.1616
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2013.1616
Type: Artículo

References

H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1966) 214–249.

R. Engelking, General Topology, Heldermann 1989.

A. Gleason, Projective topological spaces, Ill. J. Math. 2 (1958), 482–489. [+]
H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1966) 214–249.

R. Engelking, General Topology, Heldermann 1989.

A. Gleason, Projective topological spaces, Ill. J. Math. 2 (1958), 482–489.

L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag 1976.

HAGER, A. W. (1989). Minimal Covers of Topological Spaces. Annals of the New York Academy of Sciences, 552(1 Papers on Gen), 44-59. doi:10.1111/j.1749-6632.1989.tb22385.x

Hager, A. W., & Martinez, J. (1998). Singular Archimedean lattice-ordered groups. Algebra Universalis, 40(2), 119-147. doi:10.1007/s000120050086

A. Hager and L. Robertson, Representing and ringifying a Riesz space, Symp. Math. XXI (1977), 411–431.

H. Herrlich and G. Strecker, Category Theory, Allyn and Bacon 1973.

Kennison, J. F. (1965). Reflective functors in general topology and elsewhere. Transactions of the American Mathematical Society, 118, 303-303. doi:10.1090/s0002-9947-1965-0174611-9

Porter, J. R., & Woods, R. G. (1988). Extensions and Absolutes of Hausdorff Spaces. doi:10.1007/978-1-4612-3712-9

V. Trnková, Non-constant continuous mappings of metric or compact Hausdorff spaces, Comm. Math. Univ. Carol. 13 (1972), 283–295.

[-]

This item appears in the following Collection(s)

Show full item record