Toselli, AH.; Puigcerver, J.; Vidal, E. (2016). Two Methods to Improve Confidence Scores for Lexicon-Free Word Spotting in Handwritten Text. IEEE. https://doi.org/10.1109/ICFHR.2016.0072
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/87620
Título:
|
Two Methods to Improve Confidence Scores for Lexicon-Free Word Spotting in Handwritten Text
|
Autor:
|
Toselli, Alejandro Héctor
Puigcerver, Joan
Vidal, Enrique
|
Editor:
|
IEEE
|
Entidad UPV:
|
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
|
Fecha difusión:
|
|
Resumen:
|
[EN] Two methods are presented to improve word confidence scores for Line-Level Query-by-String Lexicon-Free Keyword Spotting (KWS) in handwritten text images. The first one approaches true relevance probabilities by means ...[+]
[EN] Two methods are presented to improve word confidence scores for Line-Level Query-by-String Lexicon-Free Keyword Spotting (KWS) in handwritten text images. The first one approaches true relevance probabilities by means of computations directly carried out on character lattices obtained from the lines images considered. The second method uses the same character lattices, but it obtains relevance scores by first computing frame-level character sequence scores which resemble the word posteriorgrams used in previous approaches for lexicon-based KWS. The first method results from a formal probabilistic derivation, which allow us to better understand and further develop the underlying ideas. The second one is less formal but, according with experiments presented in the paper, it obtains almost identical results with much lower computational cost. Moreover, in contrast with the first method, the second one allows to directly obtain accurate bounding boxes for the spotted words.
[-]
|
Palabras clave:
|
Statistical framework
,
Keyword spotting
,
Word confidence score
,
Handwritten historical documents
,
Computation complexity
|
Derechos de uso:
|
Reserva de todos los derechos
|
ISBN:
|
978-1-5090-0981-7
|
Fuente:
|
|
DOI:
|
10.1109/ICFHR.2016.0072
|
Editorial:
|
IEEE
|
Versión del editor:
|
https://doi.org/10.1109/ICFHR.2016.0072
|
Título del congreso:
|
15th International Conference on Frontiers in Handwriting Recognition (ICFHR 2016)
|
Lugar del congreso:
|
Shenzhen, China
|
Fecha congreso:
|
October, 23-26, 2016
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/MECD//FPU2013%2F06281/ES/FPU2013%2F06281/
info:eu-repo/grantAgreement/EC/H2020/674943/EU/Recognition and Enrichment of Archival Documents/
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F014/ES/Adaptive learning and multimodality in pattern recognition (Almapater)/
info:eu-repo/grantAgreement/MINECO//PCIN-2015-068/ES/INDEXACION DE MANUSCRITOS HISTORICOS PARA BUSQUEDAS CONTROLADAS POR EL USUARIO/
|
Descripción:
|
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
|
Agradecimientos:
|
This work was partially supported by the Spanish MEC under FPU grant FPU13/06281, by the Generalitat Valenciana under the Prometeo/2009/014 project grant ALMAMATER, and through the EU projects: HIMANIS (JPICH programme, ...[+]
This work was partially supported by the Spanish MEC under FPU grant FPU13/06281, by the Generalitat Valenciana under the Prometeo/2009/014 project grant ALMAMATER, and through the EU projects: HIMANIS (JPICH programme, Spanish grant Ref. PCIN-2015-068) and READ (Horizon-2020 programme, grant Ref. 674943).
[-]
|
Tipo:
|
Comunicación en congreso
|