- -

Two Methods to Improve Confidence Scores for Lexicon-Free Word Spotting in Handwritten Text

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Two Methods to Improve Confidence Scores for Lexicon-Free Word Spotting in Handwritten Text

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Toselli, Alejandro Héctor es_ES
dc.contributor.author Puigcerver, Joan es_ES
dc.contributor.author Vidal, Enrique es_ES
dc.contributor.editor IEEE es_ES
dc.date.accessioned 2017-09-20T10:28:27Z
dc.date.available 2017-09-20T10:28:27Z
dc.date.issued 2016-10-23
dc.identifier.isbn 978-1-5090-0981-7
dc.identifier.issn 2167-6445
dc.identifier.uri http://hdl.handle.net/10251/87620
dc.description © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. es_ES
dc.description.abstract [EN] Two methods are presented to improve word confidence scores for Line-Level Query-by-String Lexicon-Free Keyword Spotting (KWS) in handwritten text images. The first one approaches true relevance probabilities by means of computations directly carried out on character lattices obtained from the lines images considered. The second method uses the same character lattices, but it obtains relevance scores by first computing frame-level character sequence scores which resemble the word posteriorgrams used in previous approaches for lexicon-based KWS. The first method results from a formal probabilistic derivation, which allow us to better understand and further develop the underlying ideas. The second one is less formal but, according with experiments presented in the paper, it obtains almost identical results with much lower computational cost. Moreover, in contrast with the first method, the second one allows to directly obtain accurate bounding boxes for the spotted words. es_ES
dc.description.sponsorship This work was partially supported by the Spanish MEC under FPU grant FPU13/06281, by the Generalitat Valenciana under the Prometeo/2009/014 project grant ALMAMATER, and through the EU projects: HIMANIS (JPICH programme, Spanish grant Ref. PCIN-2015-068) and READ (Horizon-2020 programme, grant Ref. 674943).
dc.format.extent 6 es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Statistical framework es_ES
dc.subject Keyword spotting es_ES
dc.subject Word confidence score es_ES
dc.subject Handwritten historical documents es_ES
dc.subject Computation complexity es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Two Methods to Improve Confidence Scores for Lexicon-Free Word Spotting in Handwritten Text es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1109/ICFHR.2016.0072
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU2013%2F06281/ES/FPU2013%2F06281/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/674943/EU/Recognition and Enrichment of Archival Documents/
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F014/ES/Adaptive learning and multimodality in pattern recognition (Almapater)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PCIN-2015-068/ES/INDEXACION DE MANUSCRITOS HISTORICOS PARA BUSQUEDAS CONTROLADAS POR EL USUARIO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Toselli, AH.; Puigcerver, J.; Vidal, E. (2016). Two Methods to Improve Confidence Scores for Lexicon-Free Word Spotting in Handwritten Text. IEEE. https://doi.org/10.1109/ICFHR.2016.0072 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 15th International Conference on Frontiers in Handwriting Recognition (ICFHR 2016) es_ES
dc.relation.conferencedate October, 23-26, 2016 es_ES
dc.relation.conferenceplace Shenzhen, China es_ES
dc.relation.publisherversion https://doi.org/10.1109/ICFHR.2016.0072 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 332104 es_ES
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem