- -

Maintenance Decision Making based on different types of data fusion

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Maintenance Decision Making based on different types of data fusion

Show simple item record

Files in this item

dc.contributor.author Galar, D. es_ES
dc.contributor.author Gustafson, A. es_ES
dc.contributor.author Tormos Martínez, Bernardo Vicente es_ES
dc.contributor.author Berges, Luis es_ES
dc.date.accessioned 2017-09-20T11:00:24Z
dc.date.available 2017-09-20T11:00:24Z
dc.date.issued 2012
dc.identifier.issn 1507-2711
dc.identifier.uri http://hdl.handle.net/10251/87630
dc.description.abstract [EN] Over the last decade, system integration is applied more as it allows organizations to streamline business processes. A recent development in the asset engineering management is to leverage the investment already made in process control systems. This allows the operations, maintenance, and process control teams to monitor and determine new alarm level based on the physical condition data of the critical machines. Condition-based maintenance (CBM) is a maintenance philosophy based on this massive data collection, wherein equipment repair or replacement decisions depend on the current and projected future health of the equipment. Since, past research has been dominated by condition monitoring techniques for specific applications; the maintenance community lacks a generic CBM implementation method based on data mining of such vast amount of collected data. The methodology would be relevant across different domains. It is necessary to integrate Condition Monitoring (CM) data with management data from CMMS (Computer Maintenance Management Systems) which contains information, such as: component failures, failure information related data, servicing or repairs, and inventory control and so on. These systems are the core of traditional scheduled maintenance practices and rely on bulk observations from historical data to make modifications to regulated maintenance actions. The most obvious obstacle in the integration of CMMS, process and CM data is the disparate nature of the data types involved, and there have benn several attempts to remedy this problem. Although, there have been many recent efforts to collect and maintain large repositories of these types of data, there have been relatively few studies to identify the ways these to datasets could be related. This paper attempts to fulfill that need by proposing a combined data mining-based methodology for CBM considering CM data and Historical Maintenance Management data. It shows a system integration of physical and management data that also supports business intelligence and data mining where data sets can be combined in non-traditional ways. es_ES
dc.description.abstract [PL] W ostatniej dekadzie coraz częściej stosuje się integrację systemów, która pozwala przedsiębiorstwom zwiększać wydajność procesów biznesowych. Nowością w zarządzaniu infrastrukturą techniczną jest zwiększanie efektywności już poczynionych inwestycji w systemy kontroli procesów. Pozwala to zespołom do spraw operacyjnych, utrzymania ruchu oraz kontroli procesów monitorować i ustalać nowe poziomy alarmowe na podstawie danych o stanie fizycznym maszyn krytycznych. Utrzymanie urządzeń zależne od ich bieżącego stanu technicznego (condition-based maintenance, CBM) to filozofia utrzymania ruchu opierająca się na tym masowym poborze danych, wedle której decyzje dotyczące naprawy lub wymiany sprzętu zależą od jego obecnego oraz przewidywanego przyszłego stanu technicznego. Ponieważ dotychczasowe badania były zdominowane przez problem technik monitorowania stanu dla konkretnych aplikacji, nie opracowano ogólnej metody wdrażania CBM opartej na eksploracji (data mining ) owych olbrzymich ilości zebranych danych, która miałaby zastosowanie w różnych domenach. Konieczna jest integracja danych z monitorowania stanu (condition monitoring, CM) z danymi dotyczącymi zarządzania pochodzącymi ze skomputeryzowanych systemów zarządzania utrzymaniem ruchu (CMMS), które zawierają informacje na temat uszkodzeń elementów składowych, dane związane z uszkodzeniami, a także informacje dotyczące obsługi lub napraw czy sterowania zapasami. Systemy te stanowią podstawę tradycyjnych praktyk obsługi planowej, a zasadzają się na całościowych obserwacjach dokonywanych na podstawie danych eksploatacyjnych, które pozwalają modyfikować regulowane działania obsługowe. Najbardziej oczywistą przeszkodą w integracji danych CMMS, danych procesowych oraz danych z monitorowania stanu jest rozbieżność ich natury. Dotychczas podjęto jedynie kilka prób rozwiązania tego problemu. Chociaż ostatnio wiele wysiłku włożono w gromadzenie i utrzymanie dużych zasobów tego typu danych, istnieje stosunkowo niewiele badań na temat możliwych sposobów powiązania owych zestawów danych. W prezentowanej pracy poczyniono próbę wypełnienia tej luki proponując metodologię łączoną opartą na eksploracji danych dla celów CBM, która bierze pod uwagę dane z monitorowania stanu i eksploatacyjne dane z zarządzania ruchem. W pracy przedstawiono integrację systemową danych fizycznych i danych z zarządzania, która wspiera także analitykę biznesową (business intelligence) oraz eksplorację danych, gdzie zestawy danych można łączyć w sposób nietradycyjny. es_ES
dc.description.sponsorship The author B. Tormos wish to thank “Programa de Apoyo a la Investigación y Desarrollo (PAID-00-11) de la Universitat Politècnica de València” for supporting his research.
dc.language Inglés es_ES
dc.publisher Polish Maintenance Society es_ES
dc.relation UPV/PAID-00-11 es_ES
dc.relation.ispartof Eksploatacja i Niezawodnosc - Maintenance and Reliability es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Data mining es_ES
dc.subject RUL es_ES
dc.subject Data fusion es_ES
dc.subject Condition monitoring es_ES
dc.subject CMMS es_ES
dc.subject Eksploracja danych es_ES
dc.subject Pozostały okres użytkowania (RUL) es_ES
dc.subject Fuzja danych es_ES
dc.subject Monitorowanie stanu es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Maintenance Decision Making based on different types of data fusion es_ES
dc.title.alternative Podejmowanie decyzji eksploatacyjnych w oparciu o fuzję różnego typu danych es_ES
dc.type Artículo es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario CMT-Motores Térmicos - Institut Universitari CMT-Motors Tèrmics es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Galar, D.; Gustafson, A.; Tormos Martínez, BV.; Berges, L. (2012). Maintenance Decision Making based on different types of data fusion. Eksploatacja i Niezawodnosc - Maintenance and Reliability. 14(2):135-144. http://hdl.handle.net/10251/87630 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.ein.org.pl/pl-2012-02-07 es_ES
dc.description.upvformatpinicio 135 es_ES
dc.description.upvformatpfin 144 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 222871 es_ES
dc.contributor.funder Universitat Politècnica de València


This item appears in the following Collection(s)

Show simple item record