Resumen:
|
[EN] Over the last decade, system integration is applied more as it allows organizations to streamline business processes. A recent
development in the asset engineering management is to leverage the investment already ...[+]
[EN] Over the last decade, system integration is applied more as it allows organizations to streamline business processes. A recent
development in the asset engineering management is to leverage the investment already made in process control systems. This
allows the operations, maintenance, and process control teams to monitor and determine new alarm level based on the physical
condition data of the critical machines. Condition-based maintenance (CBM) is a maintenance philosophy based on this
massive data collection, wherein equipment repair or replacement decisions depend on the current and projected future health
of the equipment. Since, past research has been dominated by condition monitoring techniques for specific applications; the
maintenance community lacks a generic CBM implementation method based on data mining of such vast amount of collected
data. The methodology would be relevant across different domains. It is necessary to integrate Condition Monitoring (CM)
data with management data from CMMS (Computer Maintenance Management Systems) which contains information, such as:
component failures, failure information related data, servicing or repairs, and inventory control and so on. These systems are
the core of traditional scheduled maintenance practices and rely on bulk observations from historical data to make modifications
to regulated maintenance actions. The most obvious obstacle in the integration of CMMS, process and CM data is the
disparate nature of the data types involved, and there have benn several attempts to remedy this problem. Although, there have
been many recent efforts to collect and maintain large repositories of these types of data, there have been relatively few studies
to identify the ways these to datasets could be related. This paper attempts to fulfill that need by proposing a combined data
mining-based methodology for CBM considering CM data and Historical Maintenance Management data. It shows a system
integration of physical and management data that also supports business intelligence and data mining where data sets can be
combined in non-traditional ways.
[-]
[PL] W ostatniej dekadzie coraz częściej stosuje się integrację systemów, która pozwala przedsiębiorstwom zwiększać wydajność
procesów biznesowych. Nowością w zarządzaniu infrastrukturą techniczną jest zwiększanie ...[+]
[PL] W ostatniej dekadzie coraz częściej stosuje się integrację systemów, która pozwala przedsiębiorstwom zwiększać wydajność
procesów biznesowych. Nowością w zarządzaniu infrastrukturą techniczną jest zwiększanie efektywności już poczynionych
inwestycji w systemy kontroli procesów. Pozwala to zespołom do spraw operacyjnych, utrzymania ruchu oraz kontroli procesów
monitorować i ustalać nowe poziomy alarmowe na podstawie danych o stanie fizycznym maszyn krytycznych. Utrzymanie
urządzeń zależne od ich bieżącego stanu technicznego (condition-based maintenance, CBM) to filozofia utrzymania ruchu
opierająca się na tym masowym poborze danych, wedle której decyzje dotyczące naprawy lub wymiany sprzętu zależą od jego
obecnego oraz przewidywanego przyszłego stanu technicznego. Ponieważ dotychczasowe badania były zdominowane przez
problem technik monitorowania stanu dla konkretnych aplikacji, nie opracowano ogólnej metody wdrażania CBM opartej
na eksploracji (data mining ) owych olbrzymich ilości zebranych danych, która miałaby zastosowanie w różnych domenach.
Konieczna jest integracja danych z monitorowania stanu (condition monitoring, CM) z danymi dotyczącymi zarządzania
pochodzącymi ze skomputeryzowanych systemów zarządzania utrzymaniem ruchu (CMMS), które zawierają informacje na
temat uszkodzeń elementów składowych, dane związane z uszkodzeniami, a także informacje dotyczące obsługi lub napraw czy
sterowania zapasami. Systemy te stanowią podstawę tradycyjnych praktyk obsługi planowej, a zasadzają się na całościowych
obserwacjach dokonywanych na podstawie danych eksploatacyjnych, które pozwalają modyfikować regulowane działania
obsługowe. Najbardziej oczywistą przeszkodą w integracji danych CMMS, danych procesowych oraz danych z monitorowania
stanu jest rozbieżność ich natury. Dotychczas podjęto jedynie kilka prób rozwiązania tego problemu. Chociaż ostatnio wiele
wysiłku włożono w gromadzenie i utrzymanie dużych zasobów tego typu danych, istnieje stosunkowo niewiele badań na temat
możliwych sposobów powiązania owych zestawów danych. W prezentowanej pracy poczyniono próbę wypełnienia tej luki
proponując metodologię łączoną opartą na eksploracji danych dla celów CBM, która bierze pod uwagę dane z monitorowania
stanu i eksploatacyjne dane z zarządzania ruchem. W pracy przedstawiono integrację systemową danych fizycznych i danych
z zarządzania, która wspiera także analitykę biznesową (business intelligence) oraz eksplorację danych, gdzie zestawy danych
można łączyć w sposób nietradycyjny.
[-]
|