- -

Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L

Mostrar el registro completo del ítem

Capel, C.; Fernandez Del Carmen, MA.; Alba, J.; Lima-Silva, V.; Hernandez-Gras, F.; Salinas, M.; Boronat, A.... (2015). Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. TAG Theoretical and Applied Genetics. 128(10):2019-2035. doi:10.1007/s00122-015-2563-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/87718

Ficheros en el ítem

Metadatos del ítem

Título: Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L
Autor: Capel, C Fernández Del Carmen, María Asunción Alba, JM Lima-Silva, V Hernandez-Gras, F Salinas, M Boronat, A Angosto, T Botella, MA Fernández Muñoz, Rafael Granell Richart, Antonio Capel, J Lozano, R Capel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] QTL and candidate genes associated to fruit quality traits have been identified in a tomato genetic map derived from Solanum pimpinellifolium L., providing molecular tools for marker-assisted breeding. The study ...[+]
Palabras clave: 2-Spotted spider-mite , Fresh-market tomatoes , Ascorbic-acid content , Lycopersicon esculentum , Liquid cromatography , Tetranychus urticae , Cultivated tomato , Genetyc analysis , Line population , Candidate genes
Derechos de uso: Cerrado
Fuente:
TAG Theoretical and Applied Genetics. (issn: 0040-5752 ) (eissn: 1432-2242 )
DOI: 10.1007/s00122-015-2563-4
Editorial:
Springer Verlag (Germany)
Versión del editor: http://doi.org/10.1007/s00122-015-2563-4
Agradecimientos:
Thanks are due to Dr. Fernando Yuste-Lisbona and Dr. Antonio Monforte for critical review of the manuscript. This work was funded by the ESPSOL project from the Fundacion Genoma of the Spanish Ministerio de Ciencia y ...[+]
Tipo: Artículo

References

Aflitos S, Schijlen E, de Jong H, de Ridder D, Smit S, Finkers R, Wang J, Zhang G, Li N, Mao L, Bakker F, Dirks R, Breit T, Gravendeel B, Huits H, Struss D, Swanson-Wagner R, van Leeuwen H, van Ham RC, Fito L, Guignier L, Sevilla M, Ellul P, Ganko E, Kapur A, Reclus E, de Geus B, van de Geest H, Te Lintel Hekkert B, van Haarst J, Smits L, Koops A, Sanchez-Perez G, van Heusden AW, Visser R, Quan Z, Min J, Liao L, Wang X, Wang G, Yue Z, Yang X, Xu N, Schranz E, Smets E, Vos R, Rauwerda J, Ursem R, Schuit C, Kerns M, van den Berg J, Vriezen W, Janssen A, Datema E, Jahrman T, Moquet F, Bonnet J, Peters S (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J 80:136–148

Agarwal A, Rao AV (2000) Tomato lycopene and its role in human health and chronic diseases. Can Med Assoc J 163:739–744

Alba JM, Montserrat M, Fernández-Muñoz R (2009) Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Exp Appl Acarol 47:35–47 [+]
Aflitos S, Schijlen E, de Jong H, de Ridder D, Smit S, Finkers R, Wang J, Zhang G, Li N, Mao L, Bakker F, Dirks R, Breit T, Gravendeel B, Huits H, Struss D, Swanson-Wagner R, van Leeuwen H, van Ham RC, Fito L, Guignier L, Sevilla M, Ellul P, Ganko E, Kapur A, Reclus E, de Geus B, van de Geest H, Te Lintel Hekkert B, van Haarst J, Smits L, Koops A, Sanchez-Perez G, van Heusden AW, Visser R, Quan Z, Min J, Liao L, Wang X, Wang G, Yue Z, Yang X, Xu N, Schranz E, Smets E, Vos R, Rauwerda J, Ursem R, Schuit C, Kerns M, van den Berg J, Vriezen W, Janssen A, Datema E, Jahrman T, Moquet F, Bonnet J, Peters S (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J 80:136–148

Agarwal A, Rao AV (2000) Tomato lycopene and its role in human health and chronic diseases. Can Med Assoc J 163:739–744

Alba JM, Montserrat M, Fernández-Muñoz R (2009) Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Exp Appl Acarol 47:35–47

Ament K, Van Schie CC, Bouwmeester HJ, Haring MA, Schuurink RC (2006) Induction of a least specific genranygeranyl pyrophosphate synthase and emission of (E, E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways. Planta 224:1197–1208

Areshchenkova T, Ganal MW (1999) Long tomato microsatellites are predominantly associated with centromeric regions. Genome 42:536–544

Ashrafi H, Kinkade M, Foolad MR (2009) A new genetic linkage map of tomato based on a Solanum lycopersicum × S. pimpinellifolium RIL population displaying locations of candidate pathogen response genes. Genome 52:935–956

Baldwin EA, Nisperos-Carriedo MO, Moshonas MG (1991) Quantitative analysis of flavor and other volatiles and for certain constituents of two tomato cultivars during ripening. J Am Soc Hort Sci 116:265–269

Borguini R, Torres E (2009) Tomatoes and tomato products as dietary sources of antioxidant. Food Rev Int 25:313–325

Burr B, Burr FA (1991) Recombinant inbreeds for molecular mapping in maize: theoretical and practical considerations. Trends Genet 7:55–60

Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemarie-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTL involved in tomato fruit size and composition. J Exp Bot 55:1671–1685

Chen FQ, Foolad MR (1999) A molecular linkage map of tomato based on a cross between Lycopersicon esculentum and L. pimpinellifolium and its comparison with other molecular maps of tomato. Genome 42:94–103

Chen FQ, Foolad MR, Hyman J, St Clair DA, Beelaman RB (1999) Mapping of QTL for lycopene and other fruit traits in a Lycopersicon esculentum × L. pimpinellifolium cross and comparison of QTL across tomato species. Mol Breed 5:283–299

Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001–1043

Cunningham FX Jr, Pogson B, McDonald KA, DellaPenna D, Gantt E (1996) Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8:1613–1626

Di Matteo A, Sacco A, Anacleria M, Pezzotti M, Delledonne M, Ferrarini A, Frusciante L, Barone A (2010) The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation. BMC Plant Biol 10:163

Doganlar S, Frary A, Ku HM, Tanksley SD (2002) Mapping quantitative traits loci in inbred backcross lines of Lycopersicon pimpinellifolium LA1589. Genome 456:1189–1202

Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

Fernandez-Muñoz R, Dominguez E, Cuartero J (2000) A novel source of resistance to the two-spotted spider mite in Lycopersicon pimpinellifolium Jusl. Mill.: its genetics as affected by interplot interference. Euphytica 111:169–173

Foolad MR (2007) Genome mapping and molecular breeding of tomato. Int J Plant Genomics 2007:64358

Frary A, Nesbitt TC, Frary A, Grandillo S, Van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

Frary A, Doganlar S, Frampton A, Fulton T, Uhlig J, Yates H, Tanksley S (2003) Fine mapping of quantitative trait loci for improved fruit characteristics from Lycopersicon chmielewskii chromosome 1. Genome 46:235–243

Fraser PD, Pinto ME, Holloway DE, Bramley PM (2000) Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J 24:551–558

Fulton TM, Bucheli P, Voirol E, López J, Pétiard V, Tanksley SD (2002) Quantitative trait loci QTL affecting sugars, organic acids and other biochemical properties possibly contributing to flavour, identified in four advanced backcross populations of tomato. Euphytica 127:163–177

Grandillo S, Tanksley SD (1996) Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a croos between L. esculentum and L. pimpinellifolium. Theor Appl Genet 92:957–965

Grandillo S, Ku HM, Tanksley SD (1999) Identifying loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987

Heber D, Lu QY (2002) Overview of mechanisms of action of lycopene. Exp Biol Med 227:920–923

Holland JB (2001) Epistasis and plant breeding. Plant Breed Rev 21:27–82

Kader AA, Stevens MA, Albright-Holton M, Morris LL, Algazi M (1977) Effect of fruit ripeness when picked on flavor and composition in fresh market tomatoes. J Am Soc Hort Sci 102:724–731

Kanwischer M, Porfirova S, Bergmuller E, Dormann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723

Khialparast F, Abdemishani S, Yazdisamadi B, Naghavi MR, Foolad MR (2013) Identification and characterization of quantitative trait loci related to chemical traits in tomato (Lycopersicon esculentum Mill.). Crop Breed J 3:13–18

Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

Kotkov Z, Hejtmnkov A, Lachman A (2009) Determination of the influence of variety and level of maturity of the content and development of carotenoids in tomatoes. Czech J Food Sci 27:S200–S203

Lin T, Zhu G, ZhangJ XuX, YuQ Zheng Z, Zhang Z, LunY Li S, Wang X, Huang H, Li J, Chunzhi Z, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni JJ, Chetelat RT, Zamir D, Städler T, Li J, Ye Z, Du Y, Huang S (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46:1220–1226

Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 1581:413–422

Lois LM, Rodriguez-Concepción M, Gallego F, Campos N, Boronat A (2000) Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-d-xylulose 5-phosphate synthase. Plant J 22:503–513

Meadows GG (2012) Diet, nutrients, phytochemicals, and cancer metastasis suppressor genes. Cancer Metastasis Rev 31:441–454

Miron D, Shaffer AA (1991) Sucrose Phosphate Synthase, Sucrose Synthase, and Invertase activities in developing fruit of Lycopersicum esculemtum Mill. and the sucrose accumulating Lycopersicum hirsutum Humb. and Bonpl. Plant Physiol 95:623–627

Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, Vervoort J, de Vos JHR (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141:1205–1218

Monforte AJ, Tanksley SD (2000) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803–813

Montgomery J, Wittwer CT, Palais R, Zhou L (2007) Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nat Protoc 2:59–66

Nesbitt TC, Tanksley SD (2001) fw2.2 directly affects the size of developing tomato fruit, with secondary effects on fruit number and photosyntate distribution. Plant Physiol 127:575–583

Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:1979–1989

Powell ALT, Nguyen CV, Hill T, Cheng KL, Figueroa-Balderas R, Aktas K, Ashrafi H, Pons C, Fernández-Muñoz R, Vicente A, Lopez-Baltazar J, Barry CS, Liu Y, Chetelat R, Granell A, Van Deynze A, Giovannoni JJ, Bennett AB (2012) Uniform ripening encodes a golden 2-like transcription factor regulating tomato fruit chloroplast development. Science 336:1711–1715

Raiola A, Rigano MM, Calafiore R, Frusciante L, Barone A (2014) Enhancing the health-promoting effects of tomato fruit for biofortified food. Mediat Inflamm 2014:139873

Rick CM (1974) High soluble-solids content in large-fruited tomato lines derived from a wild green-fruited species. Hilgardia 42:493–510

Rodríguez-López MJ, Garzo E, Bonani JP, Fereres A, Fernández-Muñoz R, Moriones E (2011) Whitefly resistance traits derived from the wild tomato Solanum pimpinellifolium affect the preference and feeding behavior of Bemisia tabaci and reduce the spread of Tomato yellow leaf curl virus. Phytopathology 10:1191–1201

Saliba-Colombani V, Causse M, Langlois D, Philouze J, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTL for physical and chemical traits. Theor Appl Genet 102:259–272

Salinas M, Capel C, Alba JM, Mora B, Cuartero J, Fernández-Muñoz R, Lozano R, Capel J (2013) Genetic mapping of two QTL from the wild tomato Solanum pimpinellifolium L. controlling resistance against two-spotted spider mite (Tetranychus urticae Koch). Theor Appl Genet 126:83–92

Sharma A, Zhang L, Nino-Liu D, Ashrafi H, Foolad MR (2008) A Solanum lycopersicum × Solanum pimpinellifolium linkage map of tomato displaying genomic locations of R-Genes, RGAs, and candidate resistance/defense-response ESTs. Int J Plant Genomics 2008:926090

Smulders MJM, Bredemeijer G, RusKortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 94:264–272

Stevens MA, Rick CM (1986) Genetics and breeding. In: Athernon JG, Rudich J (eds) The tomato crop. A scientific basis for improvement. Chapman and Hall, London, pp 35–109

Stevens MA, Kader AA, Albright-Holton M (1977) Intercultivar variation in composition of locular and pericarp portions of fresh market tomatoes. J Am Soc Horti Sci 102:689–692

Stevens R, Buret M, Philippe D, Garchely C, Baldet P, Rothan C, Causse M (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953

The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

Vallverdú-Queral A, Medina-Remón A, Martínez-Huélamo M, Jaúregui O, Andres-Lacueva C, Lamuela-Raventos RM (2011) Phenolic profile and hydrophilic antioxidant capacity as chemotaxonomic markers of tomato varieties. J Agric Food Chem 59:3994–4001

Van der Hoeven R, Ronnind C, Giovannoni JJ, Martin G, Tanksley SD (2002) Deductions about the number, organization and evolution of genes in the tomato geneme based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14:1441–1456

van Ooijen JW (2006) JoinMap® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

Villalta I, Reina-Sanchez A, Cuartero J, Carbonell EA, Asins MJ (2005) Comparative microsatellite linkage analysis and genetic structure of two populations of F6 lines derived from Lycopersicon pimpinellifolium and L. cheesmanii. Theor Appl Genet 110:881–894

Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTL. J Hered 93:77–78

Xu J, Ranc N, Muños S, Rolland S, Bouchet JP, Desplat N, Le Paslier MC, Liang Y, Brunel D, Causse M (2013) Phenotypic diversity and association mapping for fruit quality traits in cultivated tomato and related species. Theor Appl Genet 126:567–581

Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J (2008) QTL network: mapping and visualizing genetic architecture of complex trait in experimental populations. Bioinformatics 10:721–723

Yates HE, Frary A, Doganlar S, Frampton A, Eannetta NT, Uhlig J, Tanksley SD (2004) Comparative fine mapping of fruit quality QTL on chromosome 4 introgressions derived from two wild tomato species. Euphytica 135:283–296

Zou L, Li H, Ouyang B, Zhang J, Ye Z (2006) Cloning and mapping of genes involved in tomato ascorbic acid biosynthesis and metabolism. Plant Sci 170:120–127

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem