- -

Composites of poly(methyl methacrylate) with hybrid fillers (micro/nanohydroxyapatite): mechanical, setting properties, bioactivity and cytotoxicity in vitro

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Composites of poly(methyl methacrylate) with hybrid fillers (micro/nanohydroxyapatite): mechanical, setting properties, bioactivity and cytotoxicity in vitro

Mostrar el registro completo del ítem

López Hernandez, M.; Morejon Alonso, L.; Monleón Pradas, M.; Ledea Lozano, OE.; Guadarrama Bello, D. (2013). Composites of poly(methyl methacrylate) with hybrid fillers (micro/nanohydroxyapatite): mechanical, setting properties, bioactivity and cytotoxicity in vitro. Polymer Composites. 34(11):1927-1937. doi:10.1002/pc.22600

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/87882

Ficheros en el ítem

Metadatos del ítem

Título: Composites of poly(methyl methacrylate) with hybrid fillers (micro/nanohydroxyapatite): mechanical, setting properties, bioactivity and cytotoxicity in vitro
Autor: López Hernandez, Mónica Morejon Alonso, Lizette Monleón Pradas, Manuel Ledea Lozano, Oscar Ernesto Guadarrama Bello, Dainelys
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Fecha difusión:
Resumen:
[EN] Novel composites of poly(methyl methacrylate) with silanized micro and nanohydroxyapatite (HA) particles were prepared. Coralina((R)) HA was the MicroHA filler and synthetic NanoHA was the reinforcement. The influence ...[+]
Palabras clave: ACRYLIC BONE-CEMENT , FUNCTIONALIZED METHACRYLATES , NANO-HYDROXYAPATITE , CERAMIC FILLERS , PMMA , PARTICLES , INVIVO , POWDER , VIVO , TCP
Derechos de uso: Cerrado
Fuente:
Polymer Composites. (issn: 0272-8397 ) (eissn: 1548-0569 )
DOI: 10.1002/pc.22600
Editorial:
Wiley
Versión del editor: http://dx.doi. org/10.1002/pc.22600
Agradecimientos:
Contract grant sponsor: MAEC-AECID.
Tipo: Artículo

References

Lewis, G. (1997). Properties of acrylic bone cement: State of the art review. Journal of Biomedical Materials Research, 38(2), 155-182. doi:10.1002/(sici)1097-4636(199722)38:2<155::aid-jbm10>3.0.co;2-c

Basgorenay, B., Ulubayram, K., Serbetci, K., Onurhan, E., & Hasirci, N. (2006). Preparation, modification, and characterization of acrylic cements. Journal of Applied Polymer Science, 99(6), 3631-3637. doi:10.1002/app.22787

Daglilar, S., & Erkan, M. E. (2007). A study on bioceramic reinforced bone cements. Materials Letters, 61(7), 1456-1459. doi:10.1016/j.matlet.2006.07.068 [+]
Lewis, G. (1997). Properties of acrylic bone cement: State of the art review. Journal of Biomedical Materials Research, 38(2), 155-182. doi:10.1002/(sici)1097-4636(199722)38:2<155::aid-jbm10>3.0.co;2-c

Basgorenay, B., Ulubayram, K., Serbetci, K., Onurhan, E., & Hasirci, N. (2006). Preparation, modification, and characterization of acrylic cements. Journal of Applied Polymer Science, 99(6), 3631-3637. doi:10.1002/app.22787

Daglilar, S., & Erkan, M. E. (2007). A study on bioceramic reinforced bone cements. Materials Letters, 61(7), 1456-1459. doi:10.1016/j.matlet.2006.07.068

Yamamuro, T., Nakamura, T., Iida, H., Kawanabe, K., Matsuda, Y., Ido, K., … Senaha, Y. (1998). Development of bioactive bone cement and its clinical applications. Biomaterials, 19(16), 1479-1482. doi:10.1016/s0142-9612(98)00062-3

Dunne, N. J., & Orr, J. F. (2002). Journal of Materials Science: Materials in Medicine, 13(1), 17-22. doi:10.1023/a:1013670132001

Dalby, M. J., Di Silvio, L., Harper, E. J., & Bonfield, W. (1999). Journal of Materials Science: Materials in Medicine, 10(12), 793-796. doi:10.1023/a:1008907218330

Henrich, D. E., Cram, A. E., Park, J. B., Liu, Y. K., & Reddi, H. (1993). Inorganic bone and demineralized bone matrix impregnated bone cement: A preliminaryin vivo study. Journal of Biomedical Materials Research, 27(2), 277-280. doi:10.1002/jbm.820270218

Dai, K. R., Liu, Y. K., Park, J. B., Clark, C. R., Nishiyama, K., & Zheng, Z. K. (1991). Bone-particle-impregnated bone cement: Anin vivo weight-bearing study. Journal of Biomedical Materials Research, 25(2), 141-156. doi:10.1002/jbm.820250202

Canul-Chuil, A., Vargas-Coronado, R., Cauich-Rodríguez, J. V., Martínez-Richa, A., Fernandez, E., & Nazhat, S. N. (2002). Comparative study of bone cements prepared with either HA or α-TCP and functionalized methacrylates. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 64B(1), 27-37. doi:10.1002/jbm.b.10486

Vázquez, B., Ginebra, M. P., Gil, X., Planell, J. A., & San Román, J. (2005). Acrylic bone cements modified with β-TCP particles encapsulated with poly(ethylene glycol). Biomaterials, 26(20), 4309-4316. doi:10.1016/j.biomaterials.2004.10.042

Shinzato, S., Nakamura, T., Goto, K., & Kokubo, T. (2003). In Vivo Aging Test for Bioactive Bone Cements Composed of Glass Bead and PMMA. Key Engineering Materials, 254-256, 173-176. doi:10.4028/www.scientific.net/kem.254-256.173

Puska, M., Forsback, A.-P., Yli-Urpo, A., Seppälä, J., & Vallittu, P. K. (2007). Biomineralization of Glass Fibre Reinforced Porous Acrylic Bone Cement. Key Engineering Materials, 330-332, 815-818. doi:10.4028/www.scientific.net/kem.330-332.815

Mousa, W. F., Kobayashi, M., Shinzato, S., Kamimura, M., Neo, M., Yoshihara, S., & Nakamura, T. (2000). Biological and mechanical properties of PMMA-based bioactive bone cements. Biomaterials, 21(21), 2137-2146. doi:10.1016/s0142-9612(00)00097-1

Vallo, C. I., Montemartini, P. E., Fanovich, M. A., L�pez, J. M. P., & Cuadrado, T. R. (1999). Polymethylmethacrylate-based bone cement modified with hydroxyapatite. Journal of Biomedical Materials Research, 48(2), 150-158. doi:10.1002/(sici)1097-4636(1999)48:2<150::aid-jbm9>3.0.co;2-d

Morejón, L., Mendizábal, A. E., García-Menocal, J. A. D., Ginebra, M. P., Aparicio, C., Mur, F. J. G., … Planell, J. A. (2004). Static mechanical properties of hydroxyapatite (HA) powder-filled acrylic bone cements: Effect of type of HA powder. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72B(2), 345-352. doi:10.1002/jbm.b.30166

Lewis, G., Nyman, J. S., & Trieu, H. H. (1997). Effect of mixing method on selected properties of acrylic bone cement. Journal of Biomedical Materials Research, 38(3), 221-228. doi:10.1002/(sici)1097-4636(199723)38:3<221::aid-jbm6>3.0.co;2-r

Serbetci, K., Korkusuz, F., & Hasirci, N. (2004). Thermal and mechanical properties of hydroxyapatite impregnated acrylic bone cements. Polymer Testing, 23(2), 145-155. doi:10.1016/s0142-9418(03)00073-4

Okada, Y., Kawanabe, K., Fujita, H., Nishio, K., & Nakamura, T. (1999). Repair of segmental bone defects using bioactive bone cement: Comparison with PMMA bone cement. Journal of Biomedical Materials Research, 47(3), 353-359. doi:10.1002/(sici)1097-4636(19991205)47:3<353::aid-jbm9>3.0.co;2-p

Castaldini, A., & Cavallini, A. (1985). Setting properties of bone cement with added synthetic hydroxyapatite. Biomaterials, 6(1), 55-60. doi:10.1016/0142-9612(85)90039-0

Murugan, R., & Ramakrishna, S. (2004). Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials, 25(17), 3829-3835. doi:10.1016/j.biomaterials.2003.10.016

Sanosh, K. P., Chu, M.-C., Balakrishnan, A., Kim, T. N., & Cho, S.-J. (2009). Preparation and characterization of nano-hydroxyapatite powder using sol-gel technique. Bulletin of Materials Science, 32(5), 465-470. doi:10.1007/s12034-009-0069-x

Islas-Blancas, M. E., Cervantes-Uc, J. M., Vargas-Coronado, R., Cauich-Rodríguez, J. V., Vera-Graziano, R., & Martinez-Richa, A. (2001). Characterization of bone cements prepared with functionalized methacrylates and hydroxyapatite. Journal of Biomaterials Science, Polymer Edition, 12(8), 893-910. doi:10.1163/156856201753113088

Lopez-Heredia, M. A., Sa, Y., Salmon, P., de Wijn, J. R., Wolke, J. G. C., & Jansen, J. A. (2012). Bulk properties and bioactivity assessment of porous polymethylmethacrylate cement loaded with calcium phosphates under simulated physiological conditions. Acta Biomaterialia, 8(8), 3120-3127. doi:10.1016/j.actbio.2012.05.007

Zebarjad, S. M., Sajjadi, S. A., Sdrabadi, T. E., Sajjadi, S. A., Yaghmaei, A., & Naderi, B. (2011). A Study on Mechanical Properties of PMMA/Hydroxyapatite Nanocomposite. Engineering, 03(08), 795-801. doi:10.4236/eng.2011.38096

Abboud, M., Turner, M., Duguet, E., & Fontanille, M. (1997). PMMA-based composite materials with reactive ceramic fillers. Part 1.—Chemical modification and characterisation of ceramic particles. Journal of Materials Chemistry, 7(8), 1527. doi:10.1039/a700573c

Roether, J. A., & Deb, S. (2004). The effect of surface treatment of hydroxyapatite on the properties of a bioactive bone cement. Journal of Materials Science: Materials in Medicine, 15(4), 413-418. doi:10.1023/b:jmsm.0000021112.51065.40

Morejón, L., Delgado, J. A., Davidenko, N., Mendizábal, E., Barbosa, E. H., & Jasso, C. F. (2003). Kinetic effect of hydroxyapatite types on the polymerization of acrylic bone cements. International Journal of Polymeric Materials, 52(7), 637-654. doi:10.1080/00914030304903

Viano, A. M., Auwarter, J. A., Rho, J. Y., & Hoffmeister, B. K. (2001). Ultrasonic characterization of the curing process of hydroxyapatite-modified bone cement. Journal of Biomedical Materials Research, 56(4), 593-599. doi:10.1002/1097-4636(20010915)56:4<593::aid-jbm1132>3.0.co;2-t

Deb, S. (1995). Water absorption characteristics of modified hydroxyapatite bone cements. Biomaterials, 16(14), 1095-1100. doi:10.1016/0142-9612(95)98906-u

Paz, A., Guadarrama, D., López, M., E. González, J., Brizuela, N., & Aragón, J. (2012). A comparative study of hydroxyapatite nanoparticles synthesized by different routes. Química Nova, 35(9), 1724-1727. doi:10.1590/s0100-40422012000900004

Müller, L., & Müller, F. A. (2006). Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. Acta Biomaterialia, 2(2), 181-189. doi:10.1016/j.actbio.2005.11.001

Dalby, M. J., Di Silvio, L., Harper, E. J., & Bonfield, W. (2002). Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response. Biomaterials, 23(2), 569-576. doi:10.1016/s0142-9612(01)00139-9

Qiu, H., Yang, J., Kodali, P., Koh, J., & Ameer, G. A. (2006). A citric acid-based hydroxyapatite composite for orthopedic implants. Biomaterials, 27(34), 5845-5854. doi:10.1016/j.biomaterials.2006.07.042

Espigares, I., Elvira, C., Mano, J. F., Vázquez, B., San Román, J., & Reis, R. L. (2002). New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers. Biomaterials, 23(8), 1883-1895. doi:10.1016/s0142-9612(01)00315-5

Arcos, D. (2001). Bioactivity in glass/PMMA composites used as drug delivery system. Biomaterials, 22(7), 701-708. doi:10.1016/s0142-9612(00)00233-7

Ewence, A. E., Bootman, M., Roderick, H. L., Skepper, J. N., McCarthy, G., Epple, M., … Proudfoot, D. (2008). Calcium Phosphate Crystals Induce Cell Death in Human Vascular Smooth Muscle Cells. Circulation Research, 103(5). doi:10.1161/circresaha.108.181305

Motskin, M., Wright, D. M., Muller, K., Kyle, N., Gard, T. G., Porter, A. E., & Skepper, J. N. (2009). Hydroxyapatite nano and microparticles: Correlation of particle properties with cytotoxicity and biostability. Biomaterials, 30(19), 3307-3317. doi:10.1016/j.biomaterials.2009.02.044

Oliveira, J. M., Silva, S. S., Malafaya, P. B., Rodrigues, M. T., Kotobuki, N., Hirose, M., … Reis, R. L. (2009). Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: Physicochemical characterization and assessment of rat bone marrow stromal cell viability. Journal of Biomedical Materials Research Part A, 91A(1), 175-186. doi:10.1002/jbm.a.32213

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem