Mitchison, T., & Kirschner, M. (1984). Dynamic instability of microtubule growth. Nature, 312(5991), 237-242. doi:10.1038/312237a0
Margolis, R. L., & Wilson, L. (1978). Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell, 13(1), 1-8. doi:10.1016/0092-8674(78)90132-0
Desai, A., & Mitchison, T. J. (1997). MICROTUBULE POLYMERIZATION DYNAMICS. Annual Review of Cell and Developmental Biology, 13(1), 83-117. doi:10.1146/annurev.cellbio.13.1.83
[+]
Mitchison, T., & Kirschner, M. (1984). Dynamic instability of microtubule growth. Nature, 312(5991), 237-242. doi:10.1038/312237a0
Margolis, R. L., & Wilson, L. (1978). Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell, 13(1), 1-8. doi:10.1016/0092-8674(78)90132-0
Desai, A., & Mitchison, T. J. (1997). MICROTUBULE POLYMERIZATION DYNAMICS. Annual Review of Cell and Developmental Biology, 13(1), 83-117. doi:10.1146/annurev.cellbio.13.1.83
Howard, J., & Hyman, A. A. (2003). Dynamics and mechanics of the microtubule plus end. Nature, 422(6933), 753-758. doi:10.1038/nature01600
Jordan, M. A., & Wilson, L. (2004). Microtubules as a target for anticancer drugs. Nature Reviews Cancer, 4(4), 253-265. doi:10.1038/nrc1317
Ravelli, R. B. G., Gigant, B., Curmi, P. A., Jourdain, I., Lachkar, S., Sobel, A., & Knossow, M. (2004). Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 428(6979), 198-202. doi:10.1038/nature02393
Cormier, A., Marchand, M., Ravelli, R. B. G., Knossow, M., & Gigant, B. (2008). Structural insight into the inhibition of tubulin by vinca domain peptide ligands. EMBO reports, 9(11), 1101-1106. doi:10.1038/embor.2008.171
Prota, A. E., Bargsten, K., Diaz, J. F., Marsh, M., Cuevas, C., Liniger, M., … Steinmetz, M. O. (2014). A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. Proceedings of the National Academy of Sciences, 111(38), 13817-13821. doi:10.1073/pnas.1408124111
Prota, A. E., Bargsten, K., Zurwerra, D., Field, J. J., Díaz, J. F., Altmann, K.-H., & Steinmetz, M. O. (2013). Molecular Mechanism of Action of Microtubule-Stabilizing Anticancer Agents. Science, 339(6119), 587-590. doi:10.1126/science.1230582
Prota, A. E., Bargsten, K., Northcote, P. T., Marsh, M., Altmann, K.-H., Miller, J. H., … Steinmetz, M. O. (2014). Structural Basis of Microtubule Stabilization by Laulimalide and Peloruside A. Angewandte Chemie International Edition, 53(6), 1621-1625. doi:10.1002/anie.201307749
Brossi, A., Yeh, H. J. C., Chrzanowska, M., Wolff, J., Hamel, E., Lin, C. M., … Silverton, J. (1988). Colchicine and its analogues: Recent findings. Medicinal Research Reviews, 8(1), 77-94. doi:10.1002/med.2610080105
Imazio, M., Trinchero, R., & Adler, Y. (2008). Colchicine for the treatment of pericarditis. Future Cardiology, 4(6), 599-607. doi:10.2217/14796678.4.6.599
Fakih, M., Replogle, T., Lehr, J. E., Pienta, K. J., & Yagoda, A. (1995). Inhibition of prostate cancer growth by estramustine and colchicine. The Prostate, 26(6), 310-315. doi:10.1002/pros.2990260606
Lee, R. M., & Gewirtz, D. A. (2008). Colchicine site inhibitors of microtubule integrity as vascular disrupting agents. Drug Development Research, 69(6), 352-358. doi:10.1002/ddr.20267
Abad, A., López-Pérez, J. L., del Olmo, E., García-Fernández, L. F., Francesch, A., Trigili, C., … San Feliciano, A. (2012). Synthesis and Antimitotic and Tubulin Interaction Profiles of Novel Pinacol Derivatives of Podophyllotoxins. Journal of Medicinal Chemistry, 55(15), 6724-6737. doi:10.1021/jm2017573
Álvarez, R., Puebla, P., Díaz, J. F., Bento, A. C., García-Navas, R., de la Iglesia-Vicente, J., … Peláez, R. (2013). Endowing Indole-Based Tubulin Inhibitors with an Anchor for Derivatization: Highly Potent 3-Substituted Indolephenstatins and Indoleisocombretastatins. Journal of Medicinal Chemistry, 56(7), 2813-2827. doi:10.1021/jm3015603
Panda, D., Daijo, J. E., Jordan, M. A., & Wilson, L. (1995). Kinetic Stabilization of Microtubule Dynamics at Steady State in Vitro by Substoichiometric Concentrations of Tubulin-Colchicine Complex. Biochemistry, 34(31), 9921-9929. doi:10.1021/bi00031a014
Andreu, J. M., & Timasheff, S. N. (1982). Interaction of tubulin with single ring analogs of colchicine. Biochemistry, 21(3), 534-543. doi:10.1021/bi00532a019
Roesner, M., Capraro, H.-G., Jacobson, A. E., Atwell, L., Brossi, A., Iorio, M. A., … Chignell, C. F. (1981). Biological effects of modified colchicines. Improved preparation of 2-demethylcolchicine, 3-demethylcolchicine, and (+)-colchicine and reassignment of the position of the double bond in dehydro-7-deacetamidocolchicines. Journal of Medicinal Chemistry, 24(3), 257-261. doi:10.1021/jm00135a005
Pérez-Ramírez, B., Gorbunoff, M. J., & Timasheff, S. N. (1998). Linkages in Tubulin-Colchicine Functions: The Role of the Ring C (C‘) Oxygens and Ring B in the Controls†. Biochemistry, 37(6), 1646-1661. doi:10.1021/bi971344d
DUMORTIER, C., YAN, Q., BANE, S., & ENGELBORGHS, Y. (1997). Mechanism of tubulin–colchicine recognition: a kinetic study of the binding of the colchicine analogues colchicide and isocolchicine. Biochemical Journal, 327(3), 685-688. doi:10.1042/bj3270685
Andreu, J. M., Gorbunopff, M. J., Lee, J. C., & Timasheff, S. N. (1984). Interaction of tubulin with bifunctional colchicine analogs: an equilibrium study. Biochemistry, 23(8), 1742-1752. doi:10.1021/bi00303a025
Nguyen, T. L., McGrath, C., Hermone, A. R., Burnett, J. C., Zaharevitz, D. W., Day, B. W., … Gussio, R. (2005). A Common Pharmacophore for a Diverse Set of Colchicine Site Inhibitors Using a Structure-Based Approach. Journal of Medicinal Chemistry, 48(19), 6107-6116. doi:10.1021/jm050502t
Torin Huzil, J., Winter, P., Johnson, L., Weis, A. L., Bakos, T., Banerjee, A., … Tuszynski, J. A. (2010). Computational Design and Biological Testing of Highly Cytotoxic Colchicine Ring A Modifications. Chemical Biology & Drug Design, 75(6), 541-550. doi:10.1111/j.1747-0285.2010.00970.x
Cao, R., Liu, M., Yin, M., Liu, Q., Wang, Y., & Huang, N. (2012). Discovery of Novel Tubulin Inhibitors via Structure-Based Hierarchical Virtual Screening. Journal of Chemical Information and Modeling, 52(10), 2730-2740. doi:10.1021/ci300302c
Laing, N., Dahllöf, B., Hartley-Asp, B., Ranganathan, S., & Tew, K. D. (1997). Interaction of Estramustine with Tubulin Isotypes†. Biochemistry, 36(4), 871-878. doi:10.1021/bi961445w
Gireesh, K. K., Rashid, A., Chakraborti, S., Panda, D., & Manna, T. (2012). CIL-102 binds to tubulin at colchicine binding site and triggers apoptosis in MCF-7 cells by inducing monopolar and multinucleated cells. Biochemical Pharmacology, 84(5), 633-645. doi:10.1016/j.bcp.2012.06.008
Gunasekera, N., Xiong, G., Musier-Forsyth, K., & Arriaga, E. (2004). A capillary electrophoretic method for monitoring the presence of α-tubulin in nuclear preparations. Analytical Biochemistry, 330(1), 1-9. doi:10.1016/j.ab.2004.03.059
Medrano, F. J., Andreu, J. M., Gorbunoff, M. J., & Timasheff, S. N. (1991). Roles of ring C oxygens in the binding of colchicine to tubulin. Biochemistry, 30(15), 3770-3777. doi:10.1021/bi00229a026
Morrison, K. C., & Hergenrother, P. J. (2012). Whole cell microtubule analysis by flow cytometry. Analytical Biochemistry, 420(1), 26-32. doi:10.1016/j.ab.2011.08.020
Hastie, S. B., & Rava, R. P. (1989). Analysis of the near-ultraviolet absorption band of colchicine and the effect of tubulin binding. Journal of the American Chemical Society, 111(18), 6993-7001. doi:10.1021/ja00200a015
Bhattacharyya, B., Kapoor, S., & Panda, D. (2010). Fluorescence Spectroscopic Methods to Analyze Drug–Tubulin Interactions. Microtubules, in vitro, 301-329. doi:10.1016/s0091-679x(10)95017-6
Sardar, P. S., Maity, S. S., Das, L., & Ghosh, S. (2007). Luminescence Studies of Perturbation of Tryptophan Residues of Tubulin in the Complexes of Tubulin with Colchicine and Colchicine Analogues†. Biochemistry, 46(50), 14544-14556. doi:10.1021/bi701412k
Bhattacharyya, B., & Wolff, J. (1974). Promotion of Fluorescence upon Binding of Colchicine to Tubulin. Proceedings of the National Academy of Sciences, 71(7), 2627-2631. doi:10.1073/pnas.71.7.2627
Lhiaubet-Vallet, V., Sarabia, Z., Boscá, F., & Miranda, M. A. (2004). Human Serum Albumin-Mediated Stereodifferentiation in the Triplet State Behavior of (S)- and (R)-Carprofen. Journal of the American Chemical Society, 126(31), 9538-9539. doi:10.1021/ja048518g
Vayá, I., Lhiaubet-Vallet, V., Jiménez, M. C., & Miranda, M. A. (2014). Photoactive assemblies of organic compounds and biomolecules: drug–protein supramolecular systems. Chem. Soc. Rev., 43(12), 4102-4122. doi:10.1039/c3cs60413f
Bosca, F., & Tormos, R. (2013). Behavior of Drug Excited States within Macromolecules: Binding of Colchicine and Derivatives to Albumin. The Journal of Physical Chemistry B, 117(25), 7528-7534. doi:10.1021/jp402489j
Fltzgerald, T. J. (1976). Molecular features of colchicine associated with antimitotic activity and inhibition of tubulin polymerization. Biochemical Pharmacology, 25(12), 1383-1387. doi:10.1016/0006-2952(76)90108-8
Andreu, J. M. (2007). Large Scale Purification of Brain Tubulin With the Modified Weisenberg Procedure. Microtubule Protocols, 17-28. doi:10.1007/978-1-59745-442-1_2
S. L. Murov , I.Carmichael and G. L.Hug, Handbook of Photochemistry, Marcel Dekker, Inc., New York, 2nd edn, 1993
Silva, J. N., Bosca, F., Tomé, J. P. C., Silva, E. M. P., Neves, M. G. P. M. S., Cavaleiro, J. A. S., … Santus, R. (2009). Tricationic Porphyrin Conjugates: Evidence for Chain-Structure-Dependent Relaxation of Excited Singlet and Triplet States. The Journal of Physical Chemistry B, 113(52), 16695-16704. doi:10.1021/jp907930w
Land, E. J. (1980). Pulse radiolysis and flash photolysis: some applications in biology and medicine. Biochimie, 62(4), 207-221. doi:10.1016/s0300-9084(80)80395-6
Bensasson, R. V., & Gramain, J.-C. (1980). Benzophenone triplet properties in acetonitrile and water. Reduction by lactams. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 76(0), 1801. doi:10.1039/f19807601801
Plimpton, S. (1995). Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 117(1), 1-19. doi:10.1006/jcph.1995.1039
In ’t Veld, P. J., Plimpton, S. J., & Grest, G. S. (2008). Accurate and efficient methods for modeling colloidal mixtures in an explicit solvent using molecular dynamics. Computer Physics Communications, 179(5), 320-329. doi:10.1016/j.cpc.2008.03.005
Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024-10035. doi:10.1021/ja00051a040
MOPAC2009, James J. P. Stewart, Stewart computational chemistry, version 13.207L; web: http://OpenMOPAC.net
Maia, J. D. C., Urquiza Carvalho, G. A., Mangueira, C. P., Santana, S. R., Cabral, L. A. F., & Rocha, G. B. (2012). GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations. Journal of Chemical Theory and Computation, 8(9), 3072-3081. doi:10.1021/ct3004645
Chai, J.-D., & Head-Gordon, M. (2008). Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Physical Chemistry Chemical Physics, 10(44), 6615. doi:10.1039/b810189b
Schäfer, A., Huber, C., & Ahlrichs, R. (1994). Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. The Journal of Chemical Physics, 100(8), 5829-5835. doi:10.1063/1.467146
Jacquemin, D., Wathelet, V., Perpète, E. A., & Adamo, C. (2009). Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules. Journal of Chemical Theory and Computation, 5(9), 2420-2435. doi:10.1021/ct900298e
Jacquemin, D., Perpète, E. A., Ciofini, I., & Adamo, C. (2010). Assessment of Functionals for TD-DFT Calculations of Singlet−Triplet Transitions. Journal of Chemical Theory and Computation, 6(5), 1532-1537. doi:10.1021/ct100005d
Peach, M. J. G., Benfield, P., Helgaker, T., & Tozer, D. J. (2008). Excitation energies in density functional theory: An evaluation and a diagnostic test. The Journal of Chemical Physics, 128(4), 044118. doi:10.1063/1.2831900
Bartovský, P., Tormos, R., & Miranda, M. A. (2009). Colchicine–protein interactions revealed by transient absorption spectroscopy after in situ photoisomerization to lumicolchicines. Chemical Physics Letters, 480(4-6), 305-308. doi:10.1016/j.cplett.2009.09.023
Vayá, I., Bueno, C. J., Jiménez, M. C., & Miranda, M. A. (2008). Determination of Enantiomeric Compositions by Transient Absorption Spectroscopy using Proteins as Chiral Selectors. Chemistry - A European Journal, 14(36), 11284-11287. doi:10.1002/chem.200801657
Marcus, Y. (1993). The properties of organic liquids that are relevant to their use as solvating solvents. Chemical Society Reviews, 22(6), 409. doi:10.1039/cs9932200409
Nery, A. L. P., Quina, F. H., Moreira, Jr, P. F., Medeiros, C. E. R., Baader, W. J., Shimizu, K., … Bechara, E. J. H. (2001). Does the Photochemical Conversion of Colchicine into Lumicolchicines Involve Triplet Transients? A Solvent Dependence Study¶. Photochemistry and Photobiology, 73(3), 213. doi:10.1562/0031-8655(2001)073<0213:dtpcoc>2.0.co;2
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865
Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396
[-]