- -

VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits

Show full item record

Folch Fortuny, A.; Prats-Montalbán, JM.; Cubero-García, S.; Blasco Ivars, J.; Ferrer, A. (2016). VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits. Chemometrics and Intelligent Laboratory Systems. 156:241-248. doi:10.1016/j.chemolab.2016.05.005

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/88151

Files in this item

Item Metadata

Title: VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Issued date:
Abstract:
[EN] In this work an N-way partial least squares regression discriminant analysis (NPLS-DA) methodology is developed to detect symptoms of disease caused by Penicillium digitatum in citrus fruits (green mould) using ...[+]
Subjects: Hyperspectral imaging NIR NPLS-DA Variable selection Permutation test , Hyperspectral imaging , NIR , NPLS-DA , Variable selection , Permutation test
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Chemometrics and Intelligent Laboratory Systems. (issn: 0169-7439 ) (eissn: 1873-3239 )
DOI: 10.1016/j.chemolab.2016.05.005
Publisher:
Elsevier
Publisher version: http://doi.org/10.1016/j.chemolab.2016.05.005
Thanks:
This research was partially funded by the Spanish Ministry of Science and Innovation through grants DPI2011-28112-C04-02 and DPI2014-55276-C05-1R, and by INIA through grant RTA2012-00062-C04-01. In all cases with the support ...[+]
Type: Artículo

This item appears in the following Collection(s)

Show full item record