Mostrar el registro sencillo del ítem
dc.contributor.author | Folch Fortuny, Abel | es_ES |
dc.contributor.author | Prats-Montalbán, José Manuel | es_ES |
dc.contributor.author | Cubero-García, Sergio | es_ES |
dc.contributor.author | Blasco Ivars, José | es_ES |
dc.contributor.author | Ferrer, Alberto | es_ES |
dc.date.accessioned | 2017-09-28T10:25:13Z | |
dc.date.available | 2017-09-28T10:25:13Z | |
dc.date.issued | 2016-08-15 | |
dc.identifier.issn | 0169-7439 | |
dc.identifier.uri | http://hdl.handle.net/10251/88151 | |
dc.description.abstract | [EN] In this work an N-way partial least squares regression discriminant analysis (NPLS-DA) methodology is developed to detect symptoms of disease caused by Penicillium digitatum in citrus fruits (green mould) using visible/near infrared (VIS/NIR) hyperspectral images. To build the discriminant model a set of oranges and mandarins was infected by the fungus and another set was infiltrated just with water for control purposes. A double cross-validation strategy is used to validate the discriminant models. Finally, permutation testing is used to select a few bands offering the best correct classification rates in the validation set. The discriminant models developed here can be potentially implemented in a fruit packinghouse to detect infected citrus fruits at their arrival from the field with affordable multispectral (3 5 channels) cameras installed in the packinglines. | es_ES |
dc.description.sponsorship | This research was partially funded by the Spanish Ministry of Science and Innovation through grants DPI2011-28112-C04-02 and DPI2014-55276-C05-1R, and by INIA through grant RTA2012-00062-C04-01. In all cases with the support of European FEDER funds. Authors thank Lluis Palou from the Centro de Tecnologia Postcosecha at the IVIA for the help and supervision in the innoculation process of the fruits. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Chemometrics and Intelligent Laboratory Systems | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Hyperspectral imaging NIR NPLS-DA Variable selection Permutation test | es_ES |
dc.subject | Hyperspectral imaging | es_ES |
dc.subject | NIR | es_ES |
dc.subject | NPLS-DA | es_ES |
dc.subject | Variable selection | es_ES |
dc.subject | Permutation test | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.chemolab.2016.05.005 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-02/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES. (MULTISCALES)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTA2012-00062-C04-01/ES/Nuevas técnicas de inspección basadas en espectrometría para la estimación de propiedades y determinación automática de la calidad interna y sanidad de productos agroalimentarios aplicadas a líneas de inspección y manipulación (SPEC-DACSA)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2014-55276-C5-1-R/ES/BIOLOGIA SINTETICA PARA LA MEJORA EN BIOPRODUCCION: DISEÑO, OPTIMIZACION, MONITORIZACION Y CONTROL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2018-08-16 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Folch Fortuny, A.; Prats-Montalbán, JM.; Cubero-García, S.; Blasco Ivars, J.; Ferrer, A. (2016). VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits. Chemometrics and Intelligent Laboratory Systems. 156:241-248. https://doi.org/10.1016/j.chemolab.2016.05.005 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1016/j.chemolab.2016.05.005 | es_ES |
dc.description.upvformatpinicio | 241 | es_ES |
dc.description.upvformatpfin | 248 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 156 | es_ES |
dc.relation.senia | 316717 | es_ES |
dc.identifier.eissn | 1873-3239 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |