Lobo, R. F. et al. SSZ-26 and SSZ-33—2 molecular-sieves with intersecting 10-ring and 12-ring pores. Science 262, 1543–1546 (1993).
Dorset, D. L., Weston, S. C. & Dhingra, S. S. Crystal structure of zeolite MCM-68: a new three-dimensional framework with large pores. J. Phys. Chem. B 110, 2045–2050 (2006).
Simancas, R. et al. Modular organic structure-directing agents for the synthesis of zeolites. Science 330, 1219–1222 (2010).
[+]
Lobo, R. F. et al. SSZ-26 and SSZ-33—2 molecular-sieves with intersecting 10-ring and 12-ring pores. Science 262, 1543–1546 (1993).
Dorset, D. L., Weston, S. C. & Dhingra, S. S. Crystal structure of zeolite MCM-68: a new three-dimensional framework with large pores. J. Phys. Chem. B 110, 2045–2050 (2006).
Simancas, R. et al. Modular organic structure-directing agents for the synthesis of zeolites. Science 330, 1219–1222 (2010).
Leonowicz, M. E., Lawton, J. A., Lawton, S. L. & Rubin, M. K. MCM-22—a molecular-sieve with 2 independent multidimensional channel systems. Science 264, 1910–1913 (1994).
Lobo, R. F. & Davis, M. E. CIT-1—a new molecular-sieve with intersecting pores bounded by 10-rings and 12-rings. J. Am. Chem. Soc. 117, 3764–3779 (1995).
Corma, A., Rey, F., Valencia, S., Jorda, J. L. & Rius, J. A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nature Mater. 2, 493–497 (2003).
Paillaud, J. L., Harbuzaru, B., Patarin, J. & Bats, N. Extra-large-pore zeolites with two-dimensional channels formed by 14 and 12 rings. Science 304, 990–992 (2004).
Corma, A., Diaz-Cabanas, M. J., Rey, F., Nicolooulas, S. & Boulahya, K. ITQ-15: the first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications. Chem. Commun. 1356–1357 (2004).
Corma, A., Diaz-Cabanas, M. J., Jorda, J. L., Martinez, C. & Moliner, M. High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature 443, 842–845 (2006).
Treacy, M. M. J. & Newsam, J. M. Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth. Nature 332, 249–251 (1988).
Kokotailo, G. T., Lawton, S. L., Olson D. H. & Meier W. M. Structure of synthetic zeolite ZSM-5. Nature 272, 437–438 (1978).
Castaneda, R., Corma, A., Fornes, V., Rey, F. & Rius, J. Synthesis of a new zeolite structure ITQ-24, with intersecting 10- and 12-membered ring pores. J. Am. Chem. Soc. 125, 7820–7821 (2003).
Cantin, A. et al. Synthesis and structure of the bidimensional zeolite ITQ-32 with small and large pores. J. Am. Chem. Soc. 127, 11560–11561 (2005).
Moliner, M. et al. A new aluminosilicate molecular sieve with a system of pores between those of ZSM-5 and beta zeolite. J. Am. Chem. Soc. 133, 9497–9505 (2011).
Baerlocher, Ch., Weber, T., McCusker, L. B., Palatinus, L. & Zones, S. T. Unraveling the perplexing structure of the zeolite SSZ-57. Science 333, 1334–1337 (2011).
DeRosier, D. J. & Klug, A. Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130–134 (1968).
Henderson, R. & Unwin, P. N. T. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257, 28–32 (1975).
Hovmöller, S., Sjögren, A., Farrants, G., Sundberg, M. & Marinder, B-O. Accurate atomic positions from electron microscopy. Nature 311, 238–241 (1984).
Gramm, F. et al. Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature 444, 79–81 (2006).
Baerlocher, Ch. et al. Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping. Science 315, 1113–1116 (2007).
Baerlocher, Ch. et al. Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. Nature Mater. 7, 631–635 (2008).
Sun, J. L. et al. The ITQ-37 mesoporous chiral zeolite. Nature 458, 1154–1157 (2009).
Jiang, J-X. et al. Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43, Science 333, 1331–1334 (2011).
Sun, J. L. et al. Structure determination of the zeolite IM-5 using electron crystallography. Z. Kristallogr. 225, 77–85 (2010).
Zhang, D., Oleynikov, P., Hovmöller, S. & Zou, X. D. Collecting 3D electron diffraction data by the rotation method. Z. Kristallogr. 225, 94–102 (2010).
Wan, W., Hovmöller, S. & Zou, X. D. Structure projection reconstruction from through-focus series of high-resolution transmission electron microscopy images. Ultramicroscopy (revision submitted).
Zou, X. D., Sundberg, M., Larine, M. & Hovmöller, S. Structure projection retrieval by image processing of HRTEM images taken under non-optimal defocus conditions. Ultramicroscopy 62, 103–121 (1996).
Weirich, T. E., Ramlau, R., Simon, A., Hovmöller, S. & Zou, X. D. A crystal structure determined to 0.02 Å accuracy by electron microscopy. Nature 382, 144–146 (1996).
Oleynikov, P., Hovmöller, S. & Zou, X. D. ED-Tomo; available at http://www.calidris-em.com .
Zou, X. D., Hovmöller, S. & Oleynikov, P. Electron Crystallography: Electron Microscopy and Electron Diffraction, IUCr Texts on Crystallography (Oxford Univ. Press, 2011).
Wan, W., Hovmöller, S. & Zou, X. D. QFocus; available at http://www.mmk.su.se/electron-crystallography .
Hovmöller, S. CRISP: crystallographic image processing on a personal computer. Ultramicroscopy 41, 121–135 (1992).
Oleynikov, P. eMap and eSlice: a software package for crystallographic computing. Cryst. Res. Technol. 46, 569–579 (2011).
Baerlocher, Ch., Hepp, A. & Meier W. M. DLS-76. Distance Least Squares Refinement Program (Institut für Kristallographie, ETH Zurich, 1977).
Gale, J. D. GULP: a computer program for the symmetry-adapted simulation of solids. J. Chem. Soc. Faraday Trans. 93, 629–637 (1997).
Gale, J. D. & Rohl, A. L. The general utility lattice program (GULP). Mol. Simul. 29, 291–341 (2003).
Braunbarth, C. et al. Structure of strontium ion-exchanged ETS-4 microporous molecular sieves. Chem. Mater. 12, 1857–1865 (2000).
Treacy, M. M. J., Newsam, J. M. & Deem, M. W. A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. Lond. A 433, 499–520 (1991).
Baerlocher, Ch. & McCusker, L. B. Database of zeolite structures; available at http://www.iza-structure.org/databases/ .
Perego, C. & Ingallina, P. Recent advances in the industrial alkylation of aromatics: new catalysts and new processes. Catal. Today 73, 3–22 (2002).
Collins, N. A., Landis, M. E., Timken, H. K. C. & Trewella, J. C. Cetane upgrading via aromatic alkylation. WO patent 00/39253 (2000).
Corma, A., Corell, C. & Perez-Pariente, J. Synthesis and characterization of the MCM-22 zeolite. Zeolites 15, 2–8 (1995).
Catlow, C. R. A. & Cormack, A. N. Computer modeling of silicates. Int. Rev. Phys. Chem. 6, 227–250 (1987).
Schröder, K. P., Sauer, J., Leslie, M., Catlow, C. R. A. & Thomas, J. M. Bridging hydroxyl-groups in zeolitic catalysts—a computer-simulation of their structure, vibrational properties and acidity in protonated faujasites (H-Y zeolites). Chem. Phys. Lett. 188, 320–325 (1992).
[-]