- -

Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Willhammar, Tom es_ES
dc.contributor.author Sun, Junliang es_ES
dc.contributor.author wan, wei es_ES
dc.contributor.author Oleynikov, Peter es_ES
dc.contributor.author Zhang, Daliang es_ES
dc.contributor.author Zou, Xiaodong es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Gonzalez Gonzalez, Jorge es_ES
dc.contributor.author Martínez, Cristina es_ES
dc.contributor.author Rey Garcia, Fernando es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2017-09-29T11:22:42Z
dc.date.available 2017-09-29T11:22:42Z
dc.date.issued 2012-03
dc.identifier.issn 1755-4330
dc.identifier.uri http://hdl.handle.net/10251/88284
dc.description.abstract [EN] Porous materials such as zeolites contain well-defined pores in molecular dimensions and have important industrial applications in catalysis, sorption and separation. Aluminosilicates with intersecting 10- and 12-ring channels are particularly interesting as selective catalysts. Many porous materials, especially zeolites, form only nanosized powders and some are intergrowths of different structures, making structure determination very challenging. Here, we report the atomic structures of an aluminosilicate zeolite family, ITQ-39, solved from nanocrystals only a few unit cells in size by electron crystallography. ITQ-39 is an intergrowth of three different polymorphs, built from the same layer but with different stacking sequences. ITQ-39 contains stacking faults and twinning with nano-sized domains, being the most complex zeolite ever solved. The unique structure of ITQ-39, with a three-dimensional intersecting pairwise 12-ring and 10-ring pore system, makes it a promising catalyst for converting naphtha into diesel fuel, a process of emerging interest for the petrochemical industry. es_ES
dc.description.sponsorship The authors acknowledge financial support from the Spanish MICINN, Consolider Ingenio 2010-Multicat, Generalitat Valenciana through the PROMETEO programme, the Swedish Research Council (VR), the Swedish Governmental Agency for Innovation Systems (VINNOVA) and the Goran Gustafsson Foundation for Natural Scientific and Medical Research. M. Moliner also acknowledges support from the 'Subprograma Ramon y Cajal' (contract RYC-2011-08972). Wei Wan is supported by postdoctoral grants from the Carl-Trygger Foundation. The EM facility was supported by the Knut and Alice Wallenberg Foundation. Gunnel Karlsson is thanked for TEM sample preparation using ultramicrotomy. en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject MOLECULAR-SIEVE es_ES
dc.subject CRYSTAL-STRUCTURE es_ES
dc.subject 12-RING PORES es_ES
dc.subject MICROSCOPY es_ES
dc.subject COMPUTER es_ES
dc.subject DIFFRACTION es_ES
dc.subject SIMULATION es_ES
dc.subject FRAMEWORK es_ES
dc.subject CHANNELS es_ES
dc.subject PROGRAM es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/NCHEM.1253
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RYC-2011-08972/ES/RYC-2011-08972/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Willhammar, T.; Sun, J.; Wan, W.; Oleynikov, P.; Zhang, D.; Zou, X.; Moliner Marin, M.... (2012). Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography. Nature Chemistry. 4(3):188-194. https://doi.org/10.1038/NCHEM.1253 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi. org/10.1038/NCHEM.1253 es_ES
dc.description.upvformatpinicio 188 es_ES
dc.description.upvformatpfin 194 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 234696 es_ES
dc.identifier.pmid 22354432
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Göran Gustafsson Foundation for Scientific and Medical Research es_ES
dc.contributor.funder Swedish Governmental Agency for Innovation Systems es_ES
dc.contributor.funder Swedish Research Council es_ES
dc.contributor.funder Carl Trygger Foundation for Scientific Research es_ES
dc.contributor.funder Knut and Alice Wallenberg Foundation es_ES
dc.description.references Lobo, R. F. et al. SSZ-26 and SSZ-33—2 molecular-sieves with intersecting 10-ring and 12-ring pores. Science 262, 1543–1546 (1993). es_ES
dc.description.references Dorset, D. L., Weston, S. C. & Dhingra, S. S. Crystal structure of zeolite MCM-68: a new three-dimensional framework with large pores. J. Phys. Chem. B 110, 2045–2050 (2006). es_ES
dc.description.references Simancas, R. et al. Modular organic structure-directing agents for the synthesis of zeolites. Science 330, 1219–1222 (2010). es_ES
dc.description.references Leonowicz, M. E., Lawton, J. A., Lawton, S. L. & Rubin, M. K. MCM-22—a molecular-sieve with 2 independent multidimensional channel systems. Science 264, 1910–1913 (1994). es_ES
dc.description.references Lobo, R. F. & Davis, M. E. CIT-1—a new molecular-sieve with intersecting pores bounded by 10-rings and 12-rings. J. Am. Chem. Soc. 117, 3764–3779 (1995). es_ES
dc.description.references Corma, A., Rey, F., Valencia, S., Jorda, J. L. & Rius, J. A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nature Mater. 2, 493–497 (2003). es_ES
dc.description.references Paillaud, J. L., Harbuzaru, B., Patarin, J. & Bats, N. Extra-large-pore zeolites with two-dimensional channels formed by 14 and 12 rings. Science 304, 990–992 (2004). es_ES
dc.description.references Corma, A., Diaz-Cabanas, M. J., Rey, F., Nicolooulas, S. & Boulahya, K. ITQ-15: the first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications. Chem. Commun. 1356–1357 (2004). es_ES
dc.description.references Corma, A., Diaz-Cabanas, M. J., Jorda, J. L., Martinez, C. & Moliner, M. High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature 443, 842–845 (2006). es_ES
dc.description.references Treacy, M. M. J. & Newsam, J. M. Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth. Nature 332, 249–251 (1988). es_ES
dc.description.references Kokotailo, G. T., Lawton, S. L., Olson D. H. & Meier W. M. Structure of synthetic zeolite ZSM-5. Nature 272, 437–438 (1978). es_ES
dc.description.references Castaneda, R., Corma, A., Fornes, V., Rey, F. & Rius, J. Synthesis of a new zeolite structure ITQ-24, with intersecting 10- and 12-membered ring pores. J. Am. Chem. Soc. 125, 7820–7821 (2003). es_ES
dc.description.references Cantin, A. et al. Synthesis and structure of the bidimensional zeolite ITQ-32 with small and large pores. J. Am. Chem. Soc. 127, 11560–11561 (2005). es_ES
dc.description.references Moliner, M. et al. A new aluminosilicate molecular sieve with a system of pores between those of ZSM-5 and beta zeolite. J. Am. Chem. Soc. 133, 9497–9505 (2011). es_ES
dc.description.references Baerlocher, Ch., Weber, T., McCusker, L. B., Palatinus, L. & Zones, S. T. Unraveling the perplexing structure of the zeolite SSZ-57. Science 333, 1334–1337 (2011). es_ES
dc.description.references DeRosier, D. J. & Klug, A. Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130–134 (1968). es_ES
dc.description.references Henderson, R. & Unwin, P. N. T. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257, 28–32 (1975). es_ES
dc.description.references Hovmöller, S., Sjögren, A., Farrants, G., Sundberg, M. & Marinder, B-O. Accurate atomic positions from electron microscopy. Nature 311, 238–241 (1984). es_ES
dc.description.references Gramm, F. et al. Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature 444, 79–81 (2006). es_ES
dc.description.references Baerlocher, Ch. et al. Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping. Science 315, 1113–1116 (2007). es_ES
dc.description.references Baerlocher, Ch. et al. Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. Nature Mater. 7, 631–635 (2008). es_ES
dc.description.references Sun, J. L. et al. The ITQ-37 mesoporous chiral zeolite. Nature 458, 1154–1157 (2009). es_ES
dc.description.references Jiang, J-X. et al. Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43, Science 333, 1331–1334 (2011). es_ES
dc.description.references Sun, J. L. et al. Structure determination of the zeolite IM-5 using electron crystallography. Z. Kristallogr. 225, 77–85 (2010). es_ES
dc.description.references Zhang, D., Oleynikov, P., Hovmöller, S. & Zou, X. D. Collecting 3D electron diffraction data by the rotation method. Z. Kristallogr. 225, 94–102 (2010). es_ES
dc.description.references Wan, W., Hovmöller, S. & Zou, X. D. Structure projection reconstruction from through-focus series of high-resolution transmission electron microscopy images. Ultramicroscopy (revision submitted). es_ES
dc.description.references Zou, X. D., Sundberg, M., Larine, M. & Hovmöller, S. Structure projection retrieval by image processing of HRTEM images taken under non-optimal defocus conditions. Ultramicroscopy 62, 103–121 (1996). es_ES
dc.description.references Weirich, T. E., Ramlau, R., Simon, A., Hovmöller, S. & Zou, X. D. A crystal structure determined to 0.02 Å accuracy by electron microscopy. Nature 382, 144–146 (1996). es_ES
dc.description.references Oleynikov, P., Hovmöller, S. & Zou, X. D. ED-Tomo; available at http://www.calidris-em.com . es_ES
dc.description.references Zou, X. D., Hovmöller, S. & Oleynikov, P. Electron Crystallography: Electron Microscopy and Electron Diffraction, IUCr Texts on Crystallography (Oxford Univ. Press, 2011). es_ES
dc.description.references Wan, W., Hovmöller, S. & Zou, X. D. QFocus; available at http://www.mmk.su.se/electron-crystallography . es_ES
dc.description.references Hovmöller, S. CRISP: crystallographic image processing on a personal computer. Ultramicroscopy 41, 121–135 (1992). es_ES
dc.description.references Oleynikov, P. eMap and eSlice: a software package for crystallographic computing. Cryst. Res. Technol. 46, 569–579 (2011). es_ES
dc.description.references Baerlocher, Ch., Hepp, A. & Meier W. M. DLS-76. Distance Least Squares Refinement Program (Institut für Kristallographie, ETH Zurich, 1977). es_ES
dc.description.references Gale, J. D. GULP: a computer program for the symmetry-adapted simulation of solids. J. Chem. Soc. Faraday Trans. 93, 629–637 (1997). es_ES
dc.description.references Gale, J. D. & Rohl, A. L. The general utility lattice program (GULP). Mol. Simul. 29, 291–341 (2003). es_ES
dc.description.references Braunbarth, C. et al. Structure of strontium ion-exchanged ETS-4 microporous molecular sieves. Chem. Mater. 12, 1857–1865 (2000). es_ES
dc.description.references Treacy, M. M. J., Newsam, J. M. & Deem, M. W. A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. Lond. A 433, 499–520 (1991). es_ES
dc.description.references Baerlocher, Ch. & McCusker, L. B. Database of zeolite structures; available at http://www.iza-structure.org/databases/ . es_ES
dc.description.references Perego, C. & Ingallina, P. Recent advances in the industrial alkylation of aromatics: new catalysts and new processes. Catal. Today 73, 3–22 (2002). es_ES
dc.description.references Collins, N. A., Landis, M. E., Timken, H. K. C. & Trewella, J. C. Cetane upgrading via aromatic alkylation. WO patent 00/39253 (2000). es_ES
dc.description.references Corma, A., Corell, C. & Perez-Pariente, J. Synthesis and characterization of the MCM-22 zeolite. Zeolites 15, 2–8 (1995). es_ES
dc.description.references Catlow, C. R. A. & Cormack, A. N. Computer modeling of silicates. Int. Rev. Phys. Chem. 6, 227–250 (1987). es_ES
dc.description.references Schröder, K. P., Sauer, J., Leslie, M., Catlow, C. R. A. & Thomas, J. M. Bridging hydroxyl-groups in zeolitic catalysts—a computer-simulation of their structure, vibrational properties and acidity in protonated faujasites (H-Y zeolites). Chem. Phys. Lett. 188, 320–325 (1992). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem