- -

A discussion about the methodology for validating a model of a finned-tube condenser considering different correlations for the heat transfer coefficients and pressure drop

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A discussion about the methodology for validating a model of a finned-tube condenser considering different correlations for the heat transfer coefficients and pressure drop

Mostrar el registro completo del ítem

Pisano, A.; Martínez Ballester, S.; Corberán Salvador, JM.; Hidalgo Mopeán, F.; Illán Gómez, F.; García Cascales, JR. (2015). A discussion about the methodology for validating a model of a finned-tube condenser considering different correlations for the heat transfer coefficients and pressure drop. Science and Technology for the Built Environment. 21(5):585-594. https://doi.org/10.1080/23744731.2015.1040341

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/88516

Ficheros en el ítem

Metadatos del ítem

Título: A discussion about the methodology for validating a model of a finned-tube condenser considering different correlations for the heat transfer coefficients and pressure drop
Autor: Pisano, Alessandro Martínez Ballester, Santiago Corberán Salvador, José Miguel Hidalgo Mopeán, Fernando Illán Gómez, Fernando García Cascales, José Ramón
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Instituto de Ingeniería Energética - Institut d'Enginyeria Energètica
Fecha difusión:
Resumen:
[EN] The selection of suitable correlations for calculating heat transfer coefficients and pressure drop plays a fundamental role in the use of semi-empirical models for the simulation of the performance of a heat exchanger. ...[+]
Palabras clave: HORIZONTAL SMOOTH TUBE , FRICTION CHARACTERISTICS , MICROCHANNEL CONDENSERS , PERFORMANCE PREDICTION , HFC REFRIGERANTS , FLOW REGIMES , PART II , EXCHANGERS , SIMULATION , EQUATIONS
Derechos de uso: Cerrado
Fuente:
Science and Technology for the Built Environment. (issn: 2374-4731 ) (eissn: 2374-474X )
DOI: 10.1080/23744731.2015.1040341
Editorial:
Taylor & Francis
Versión del editor: http://doi.org/10.1080/23744731.2015.1040341
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2011-26771-C02-01/ES/ESTUDIO DE EVAPORADORES Y CONDENSADORES BASADOS EN TECNOLOGIA DE MINICANALES PARA SU APLICACION EN EQUIPOS DE AIRE ACONDICIONADO, REFRIGERACION Y BOMBA DE CALOR ESTACIONARIOS/
Agradecimientos:
The work of Alessandro Pisano on this project was partially supported by the Ministry for Economy and Finance of Spain, under the Formacion de Personal Investigador (FPI) program. Financial support from the Ministry for ...[+]
Tipo: Artículo

References

Bensafi, A., Borg, S., & Parent, D. (1997). CYRANO: a computational model for the detailed design of plate-fin-and-tube heat exchangers using pure and mixed refrigerants. International Journal of Refrigeration, 20(3), 218-228. doi:10.1016/s0140-7007(96)00052-7

Boissieux, X., Heikal, M. R., & Johns, R. A. (2000). Two-phase heat transfer coefficients of three HFC refrigerants inside a horizontal smooth tube, part II: condensation. International Journal of Refrigeration, 23(5), 345-352. doi:10.1016/s0140-7007(99)00071-7

Briggs, A., & Rose, J. W. (1994). Effect of fin efficiency on a model for condensation heat transfer on a horizontal, integral-fin tube. International Journal of Heat and Mass Transfer, 37, 457-463. doi:10.1016/0017-9310(94)90045-0 [+]
Bensafi, A., Borg, S., & Parent, D. (1997). CYRANO: a computational model for the detailed design of plate-fin-and-tube heat exchangers using pure and mixed refrigerants. International Journal of Refrigeration, 20(3), 218-228. doi:10.1016/s0140-7007(96)00052-7

Boissieux, X., Heikal, M. R., & Johns, R. A. (2000). Two-phase heat transfer coefficients of three HFC refrigerants inside a horizontal smooth tube, part II: condensation. International Journal of Refrigeration, 23(5), 345-352. doi:10.1016/s0140-7007(99)00071-7

Briggs, A., & Rose, J. W. (1994). Effect of fin efficiency on a model for condensation heat transfer on a horizontal, integral-fin tube. International Journal of Heat and Mass Transfer, 37, 457-463. doi:10.1016/0017-9310(94)90045-0

Cavallini, A., Censi, G., Del Col, D., Doretti, L., Longo, G. A., & Rossetto, L. (2001). Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube. International Journal of Refrigeration, 24(1), 73-87. doi:10.1016/s0140-7007(00)00070-0

Chisholm, D. (1973). Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. International Journal of Heat and Mass Transfer, 16(2), 347-358. doi:10.1016/0017-9310(73)90063-x

Hua-Zhong Tang, Ping Cheng, Kun Xu. (2001). NUMERICAL SIMULATIONS OF RESONANT OSCILLATIONS IN A TUBE. Numerical Heat Transfer, Part A: Applications, 40(1), 37-54. doi:10.1080/10407780117498

Corberán, J., & Melón, M. G. (1998). Modelling of plate finned tube evaporators and condensers working with R134A. International Journal of Refrigeration, 21(4), 273-284. doi:10.1016/s0140-7007(97)00087-x

Ding, W. K., Fan, J. F., He, Y. L., Tao, W. Q., Zheng, Y. X., Gao, Y. F., & Song, J. (2011). A general simulation model for performance prediction of plate fin-and-tube heat exchanger with complex circuit configuration. Applied Thermal Engineering, 31(16), 3106-3116. doi:10.1016/j.applthermaleng.2011.01.045

Dobson, M. K., & Chato, J. C. (1998). Condensation in Smooth Horizontal Tubes. Journal of Heat Transfer, 120(1), 193-213. doi:10.1115/1.2830043

Domansky, P.A. 2003. EVAP-COND, simulation models for finned tube heat exchangers. National Institute of Standards and Technology and Fire Research Laboratory, Gaithersburg, MD, USA.

García-Cascales, J. R., Vera-García, F., Gonzálvez-Maciá, J., Corberán-Salvador, J. M., Johnson, M. W., & Kohler, G. T. (2010). Compact heat exchangers modeling: Condensation. International Journal of Refrigeration, 33(1), 135-147. doi:10.1016/j.ijrefrig.2009.08.013

Ge, Y. T., & Cropper, R. (2005). Performance evaluations of air-cooled condensers using pure and mixture refrigerants by four-section lumped modelling methods. Applied Thermal Engineering, 25(10), 1549-1564. doi:10.1016/j.applthermaleng.2004.10.001

Jiang, H., Aute, V., & Radermacher, R. (2006). CoilDesigner: a general-purpose simulation and design tool for air-to-refrigerant heat exchangers. International Journal of Refrigeration, 29(4), 601-610. doi:10.1016/j.ijrefrig.2005.09.019

Liu, J., Wei, W., Ding, G., Zhang, C., Fukaya, M., Wang, K., & Inagaki, T. (2004). A general steady state mathematical model for fin-and-tube heat exchanger based on graph theory. International Journal of Refrigeration, 27(8), 965-973. doi:10.1016/j.ijrefrig.2004.06.008

Martínez-Ballester, S., Corberán, J.-M., & Gonzálvez-Maciá, J. (2013). Numerical model for microchannel condensers and gas coolers: Part I – Model description and validation. International Journal of Refrigeration, 36(1), 173-190. doi:10.1016/j.ijrefrig.2012.08.023

Shao, L.-L., Yang, L., Zhang, C.-L., & Gu, B. (2009). Numerical modeling of serpentine microchannel condensers. International Journal of Refrigeration, 32(6), 1162-1172. doi:10.1016/j.ijrefrig.2009.02.007

Shah, M. M. (1979). A general correlation for heat transfer during film condensation inside pipes. International Journal of Heat and Mass Transfer, 22(4), 547-556. doi:10.1016/0017-9310(79)90058-9

Soliman, M., Schuster, J. R., & Berenson, P. J. (1968). A General Heat Transfer Correlation for Annular Flow Condensation. Journal of Heat Transfer, 90(2), 267-274. doi:10.1115/1.3597497

Thome, J. R., El Hajal, J., & Cavallini, A. (2003). Condensation in horizontal tubes, part 2: new heat transfer model based on flow regimes. International Journal of Heat and Mass Transfer, 46(18), 3365-3387. doi:10.1016/s0017-9310(03)00140-6

Tandon, T. ., Varma, H. ., & Gupta, C. . (1995). Heat transfer during forced convection condensation inside horizontal tube. International Journal of Refrigeration, 18(3), 210-214. doi:10.1016/0140-7007(95)90316-r

Traviss, D.P., A.B. Baron, and W.M. Rohsenow. 1971. Forced convection condensation inside tube: A heat transfer equation for condenser design. Report No. DSR 72591-74, American Society of Heating.

Vardhan, A., & Dhar, P. . (1998). A new procedure for performance prediction of air conditioning coils. International Journal of Refrigeration, 21(1), 77-83. doi:10.1016/s0140-7007(97)00020-0

Vera-García, F., García-Cascales, J. R., Corberán-Salvador, J. M., Gonzálvez-Maciá, J., & Fuentes-Díaz, D. (2007). Assessment of condensation heat transfer correlations in the modelling of fin and tube heat exchangers. International Journal of Refrigeration, 30(6), 1018-1028. doi:10.1016/j.ijrefrig.2007.01.005

Wang, C.-C., & Chi, K.-Y. (2000). Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part I: new experimental data. International Journal of Heat and Mass Transfer, 43(15), 2681-2691. doi:10.1016/s0017-9310(99)00332-4

Zhao, L.-X., & Zhang, C.-L. (2010). Fin-and-tube condenser performance evaluation using neural networks. International Journal of Refrigeration, 33(3), 625-634. doi:10.1016/j.ijrefrig.2009.11.008

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem